

PLATAFORMA DE DESENVOLVIMENTO PINHÃO PARANÁ ANÁLISE DE DESEMPENHO DO REPOSITÓRIO SCRIBA

Sumário de Informações do Documento

Tipo do Documento: Relatório

Título do Documento: Análise de Desempenho do Repositório Scriba

Estado do Documento: Elaborado **Responsáveis**: Leslie Harlley Watter

Palavras-Chaves: ANÁLISE, DESEMPENHO, PROTOAGENTE, PARÂMETROS

Resumo: Análise de influência dos parâmetros do jackrabbit no protoagente Scriba.

Número de páginas: 44

Software utilizados: OpenOffice

Versão	Data	Mudanças
1.0	27/10/2008	Elaboração
1.1	24/11/2008	Atualização – Respostas à questionamentos e Dados sobre Configurações Recomendadas

SUMÁRIO

1 Motivação2 Hardware Utilizado	
PROCESSADOR	
DISCO RÍGIDO	
MEMÓRIA RAM	
SISTEMA OPERACIONAL	
CONFIGURAÇÕES DA VM UTILIZADA PELO JBOSS	5
2.1 Observações Importantes	6 6
BUFFERSIZE = 10	6
CACHESIZE = 1000	6
EXTRACTORPOOLSIZE = 0	6
MAXFIELDLENGTH = 10000	6
MERGEFACTOR = 10	6
MINMERGEDOCS = 100	
2.1.2 Gráficos.	6
2.1.3 Tempo de Inclusão de Arquivos.	
2.1.4 Operação de Inclusão.	
2.1.5 Operação de Pesquisa	7
3 Análise de Resultados – Inclusão de Arquivos	7
BUFFERSIZE	7
CACHESIZE	7
EXTRACTORPOOLSIZE	7
MAXFIELDLENGTH	7
MERGEFACTOR	7
MINMERGEDOCS	8
3.1 Influência do parâmetro bufferSize	
3.2 Influência do parâmetro cacheSize 3.3 Influência do parâmetro extractorPoolSize	
3.4 Influência do parâmetro max Field Length	
3.5 Influência do parâmetro mergeFactor	
3.6 Influência do parâmetro minMergeDocs	
4 Análise de Resultados – Pesquisa de Arquivos.	
4.1 Influência do parâmetro bufferSize	
4.2 Influência do parâmetro cacheSize	
4.3 Influência do parâmetro extractorPoolSize	
4.4 Influência do parâmetro maxFieldLength	
4.5 Influência do parâmetro mergeFactor	
4.6 Influência do parâmetro minMergeDocs	
5 Avaliação de Infra-Estrutura	
5.1 Tamanhos de Repositório e Índices	
5.2 Quantidade de Memória RAM Utilizada	
6 Resultados Obtidos.	42

ConclusãoINDEXAÇÃO MÁXIMA	
·	
INDEXAÇÃO INTERMEDIÁRIA	43
7.1 Configurações Recomendadas	
7.1.1 Repositório com Tamanho Médio de Arquivos 100-300KBytes	44
7.1.2 Repositório com Tamanho Médio de Arquivos 1-3MBytes	44
7.1.3 Repositório com Tamanho Médio de Arquivos 10MBytes	44
7.1.4 Tempo Utilizado – Configurações Recomendadas	
7.1.5 Memória RAM utilizada para Configurações Recomendadas	
7.2 Perguntas Frequentes	

1 Motivação

A necessidade de planejar o repositório de documentos utilizado pelo protoagente Documentador e fornecer o melhor desempenho na sua utilização levaram à realização dos testes relatados nesse documento.

O objetivo dos testes foi identificar a relação entre os diversos valores para os parâmetros de configuração que o *jackrabbit*¹ fornece para que fosse possível identificar os melhores valores a serem utilizados em nossa configuração.

As seções a seguir descrevem o ambiente de testes e o resultado dos testes propriamente ditos, tanto para as operações de inclusão de arquivos em lote como para os testes de pesquisa. A seção 5 traz os resultados obtidos para o consumo de espaço em disco quando da indexação de um número maior de palavras (ou *tokens*) por arquivo. Ao final, as seções 6 e 7 apresentam os resultados obtidos e a conclusão dos testes.

2 Hardware Utilizado

processador

- AMD AthlonTM XP 2600+
- 1.9 GHz

disco rígido

- SAMSUNG SP0842N
- modo de operação UDMA5
- velocidade leitura/gravação 54.55 MB/sec

Memória RAM

- Total: 1024MBytes

Sistema Operacional

- Debian Linux Etch

Configurações da VM utilizada pelo Jboss

- -Xms128m

¹ O jackrabbit (http://jackrabbit.apache.org/) é uma implementação para repositório de conteúdos da JSR170 e JSR283.

- -Xmx512m
- -XX:MaxPermSize=128m
- -XX:+AggressiveOpts
- - Dsun.rmi.dgc.client.gcInterval=3600000
- - Dsun.rmi.dgc.server.gcInterval=3600000

2.1 Observações Importantes

2.1.1 Configuração Inicial dos Testes

Para todos os testes executados, partiu-se da seguinte configuração para os parâmetros do jackrabbit:

```
bufferSize = 10
cacheSize = 1000
extractorPoolSize = 0
maxFieldLength = 10000
mergeFactor = 10
minMergeDocs = 100
```

A única exceção à essa regra foi para a medida do parâmetro *mergeFactor* onde o valor utilizado para *minMergeDocs* foi de 200.

Essa configuração foi escolhida como configuração base por ser a configuração atualmente utilizada no servidor da CELEPAR.

2.1.2 Gráficos

Os gráficos apresentados nas seções 3 e 4 tem como *eixo X* um número arbitrário, utilizado apenas para separar as execuções de teste, enquanto que no *eixo Y*, as variáveis encontram-se expressas em milisegundos. A legenda abaixo dos gráficos é composta de p-val-numa, onde val indica o valor aplicado ao parâmetro para aquele teste e num indica o número de arquivos utilizados em cada teste.

2.1.3 Tempo de Inclusão de Arquivos

O tempo de inclusão de arquivos apresentado é a somatória dos tempos da inclusão dos arquivo individualmente, não considerando tempo de inicialização do jboss, nem mesmo tempo de espera entre uma operação de inclusão e outra.

2.1.4 Operação de Inclusão

A execução dos testes foi executada com a seguinte configuração: uma única máquina contendo os arquivos a serem incluídos e a estrutura do servidor, composta por servidor de banco de dados e servidor de aplicação. Essa configuração certamente influencia os tempos de inclusão de arquivos, uma vez que a taxa de transferência de dados utilizando o WebService é a máxima possível. Por outro lado, é necessário salientar que existe concorrência na utilização do disco rígido quando da inserção de arquivos, por parte do servidor de aplicação e do servidor de banco de dados

2.1.5 Operação de Pesquisa

O tempo médio de pesquisa foi obtido através da média aritmética de 30 pesquisas consecutivas com itens diferentes mas que seriam encontrados nos mesmos arquivos dentro do repositório. Dessa maneira elimina-se o atraso da busca ao repositório na primeira vez e obtém-se o tempo médio de pesquisa para um item que esteja na memória cache do servidor de aplicação, sem contanto desconsiderar o tempo de pesquisa. O teste foi executado procurando-se por trinta padrões diferentes, mas que poderiam ser encontrados no mesmo arquivo. Uma vez carregado este arquivo na memória do servidor de aplicação, com todos os seus *tokens*, as próximas pesquisas se valem da cache para retornar mais rapidamente os primeiros resultados. Como a abrangência da busca utilizada na pesquisa envolvia todo o repositório, acredita-se que somente para repositórios de tamanho significativo (onde os índices do repositório não caibam na memória RAM) ocorra diferença significativa nos resultados.

3 Análise de Resultados – Inclusão de Arquivos

As próximas seções analisam os parâmetros de configuração do jackrabbit em conjunto com o protoagente Scriba onde:

bufferSize

indica o número máximo de documentos que são mantidos em uma fila de pendências até que sejam adicionados ao índice.

cacheSize

tamanho da cache de documentos. Essa cache mapeia uuids para os números de documento do lucene.

extractorPoolSize

indica o número de threads a ser utilizado para indexação do conteúdo dos arquivos incluídos no repositório.

maxFieldLength

indica o número máximo de palavras que serão indexadas por propriedade.

mergeFactor

indica a frequência de agregação de segmentos de índices.

minMergeDocs

indica o número mínimo de arquivos a serem agregados em uma única transação para escrita do índice.

3.1 Influência do parâmetro bufferSize

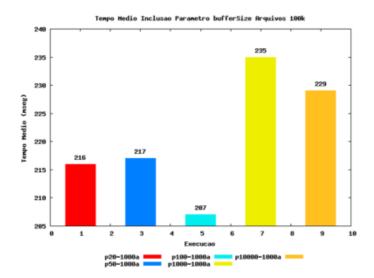


Figura 1: Tempo Médio de Inclusão bufferSize 100KB 1000 arquivos

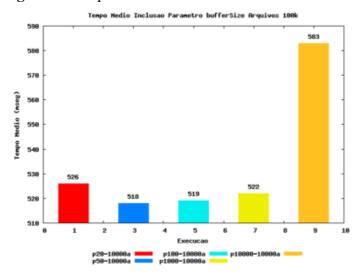


Figura 2: Tempo Médio de Inclusão bufferSize 100KB 1000 arquivos0

Tam/Param	20	50	100	1000	10000
100k	3	3	3	3	3
1M	10	9	9	10	11

10M	43	42	44	43	46

Tabela 1: Tempo de Inclusão de 1000 Arquivos (em min) – bufferSize

Analisando as figuras 1 e 2 observa-se que o menor tempo de inclusão é obtido quando o parâmetro bufferSize tem o valor 100. Esta diferença de 10 milisegundos entre os tempos de inclusão com valores 50 e 100, respectivamente, não se verifica quando aumentamos a quantidade de arquivos incluídos de 1.000 para 10.000. Ocorre, entretanto, uma mudança de comportamento, onde o tempo médio de inclusão de arquivos para a configuração com parâmetro igual a 50 é menor que o tempo médio de inclusão com parâmetro igual a 100. Embora essa diferença não seja significativa para arquivos com tamanho entre 100 e 300 KBytes, observa-se que a diferença se intensifica à medida em que aumenta-se o número de arquivos incluídos juntamente com o tamanho dos arquivos; vide figura 3,figura 4 e figura 5.

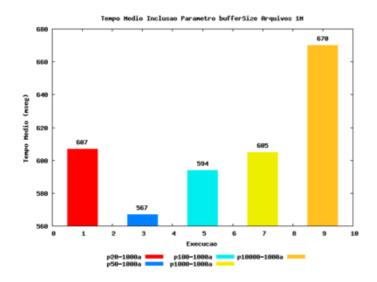


Figura 3: Tempo Médio de Inclusão bufferSize 1MB 1000 arquivos

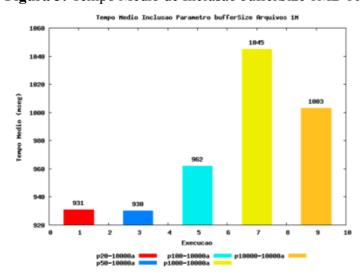


Figura 4: Tempo Médio de Inclusão bufferSize 1MB 10000 arquivos

Tam/Param	20	50	100	1000	10000
100k	87	86	86	87	97
1M	155	155	160	174	167

Tabela 2: Tempo de Inclusão de 10000 Arquivos (em min) – bufferSize

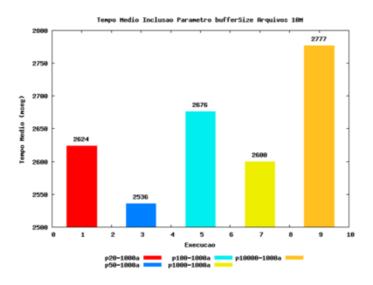


Figura 5: Tempo Médio de Inclusão bufferSize 10MB 1000 arquivos

As diferenças no tempo médio de inclusão estão diretamente relacionadas com o tamanho e quantidade dos arquivos a serem incluídos. Observando as figuras 1 e 5, é possível verificar a relação de tamanhos 100kBytes-10Mbytes e tempos de inclusão da ordem de 216-2600milisegundos respectivamente.

A partir das observações acima, observa-se que para a operação de inserção de arquivos no repositório, independente do número de arquivos a serem incluídos no repositório, para arquivos com tamanhos médios de 100KBytes, 1MBytes e 10MBytes o melhor valor para o parâmetro *bufferSize* é 50.

3.2 Influência do parâmetro cacheSize

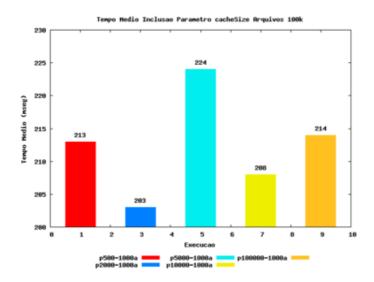


Figura 6: Tempo Médio de Inclusão cacheSize 100KB 1000 arquivos

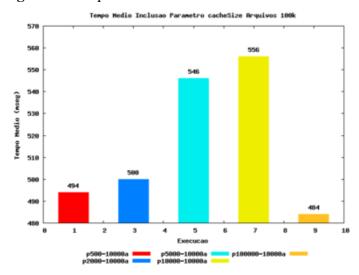


Figura 7: Tempo Médio de Inclusão cacheSize 100KB 10000 arquivos

Tam/Param	500	2000	5000	10000	100000
100k	3	3	3	3	3
1M	10	10	10	10	10
10M	43	42	44	45	40

Tabela 3: Tempo de Inclusão de 1000 Arquivos (em min) – cacheSize

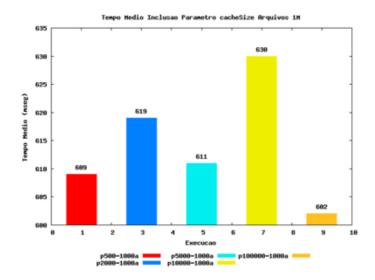


Figura 8: Tempo Médio de Inclusão cacheSize 1MB 1000 arquivos

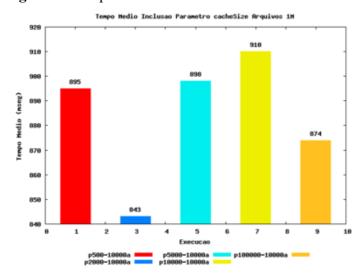


Figura 9: Tempo Médio de Inclusão cacheSize 1MB 10000 arquivos

Tam/Param	500	2000	5000	10000	100000
100k	82	83	91	92	80
1M	149	140	149	151	145

Tabela 4: Tempo de Inclusão de 10000 Arquivos (em min) – cacheSize

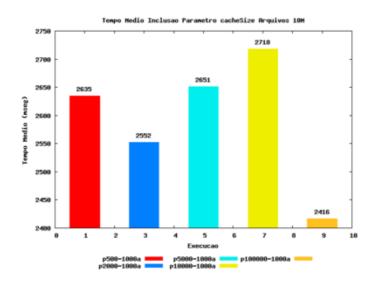


Figura 10: Tempo Médio de Inclusão cacheSize 10MB 1000 arquivos

Observa-se das figuras 7, 8 e 10 que quanto maior o volume/tamanho dos dados, o menor tempo médio de inclusão é obtido utilizando-se o maior valor para o parâmetro *cacheSize*, independente da quantidade/tamanho de arquivos utilizados.

Porém, observa-se que na figura 9 o menor tempo ocorre para o valor 2.000. Esta divergência pode ser explicada por uma coincidência do tamanho médio de arquivos e memória com o tamanho do cache especificado, maximizando o resultado obtido. Desconsiderando-se essa medida, observa-se que, para os demais valores associados ao parâmetro, confirma-se a tendência de que, quanto maior o tamanho do cache, menor o tempo médio de inclusão, para quantidade e tamanho de arquivos que preencham a cache completamente.

3.3 Influência do parâmetro extractorPoolSize

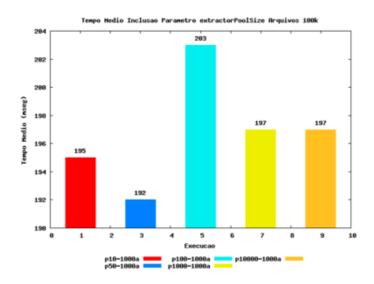


Figura 11: Tempo Médio de Inclusão extractorPoolSize 100KB 1000 arquivos

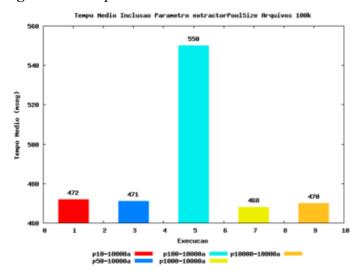


Figura 12: Tempo Médio de Inclusão extractorPoolSize 100KB 10000 arquivos

Tam/Param	10	50	100	1000	10000
100k	3	3	3	3	3
1M	8	8	8	8	8
10M	41	41	40	40	40

Tabela 5: Tempo de Inclusão de 1000 Arquivos (em min) – extractorPoolSize

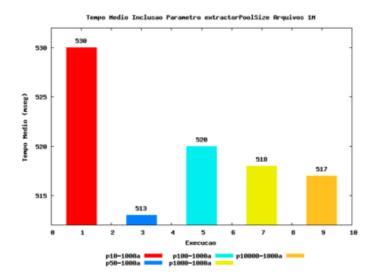


Figura 13: Tempo Médio de Inclusão extractorPoolSize 1MB 1000 arquivos

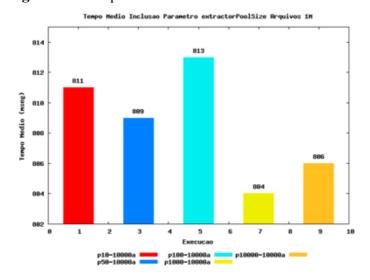


Figura 14: Tempo Médio de Inclusão extractorPoolSize 1MB 10000 arquivos

Tam/Param	10	50	100	1000	10000
100k	78	78	91	78	78
1M	135	134	135	134	134

Tabela 6: Tempo de Inclusão de 10000 Arquivos (em min) – extractorPoolSize

Analisando as figuras 11 e 13 em conjunto com as figuras 12 e 14 observamos que o menor tempo médio de inclusão de arquivos está relacionado diretamente com o número de arquivos a serem incluídos. Quanto maior o número de arquivos a serem incluídos, o menor tempo médio de inclusão ocorre com um número maior de threads. Observe que, para o tamanho de 100KBytes com 1.000 arquivos o menor tempo médio é obtido com 50 threads, enquanto que para o mesmo tamanho, porém para 10.000 arquivos, o menor tempo médio é obtido utilizandose 1.000 threads. O mesmo comportamento ocorre para o tamanho de arquivos ao redor de

1MByte.

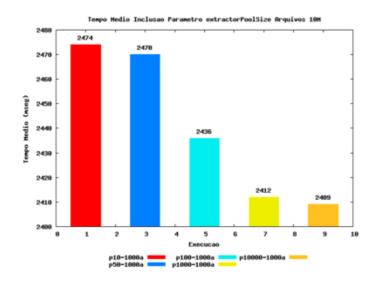


Figura 15: Tempo Médio de Inclusão extractorPoolSize 10MB 1000 arquivos

Observa-se também que o menor tempo médio para arquivos de 10MBytes é obtido utilizando-se o maior valor de threads (10.000) testado. Desse comportamento podemos inferir que, à medida em que o número e tamanho dos arquivos aumenta, se faz necessário utilizar mais threads para indexar os arquivos com o menor tempo possível.

3.4 Influência do parâmetro maxFieldLength

Nota: O valor máximo para o parâmetro *maxFieldLength* é 2³¹–1 ou 2147483647 ou ainda a constante **Integer.MAX_VALUE** do Java. Atribuindo esse valor ao parâmetro *maxFieldLength* o único limitador na indexação de documentos será a quantidade de memória disponível.

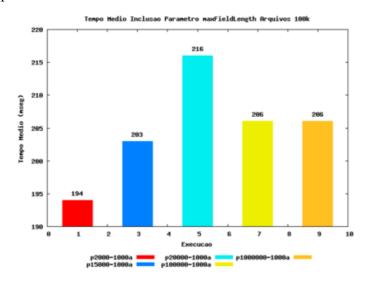


Figura 16: Tempo Médio de Inclusão maxFieldLength 100KB 1000 arquivos

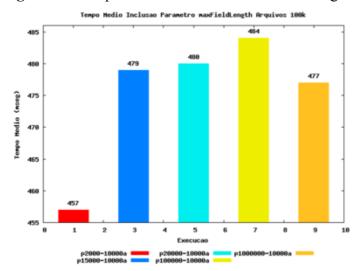


Figura 17: Tempo Médio de Inclusão maxFieldLength 100KB 10000 arquivos

Tam/Param	2000	15000	20000	100000	1000000
100k	3	3	3	3	3
1M	9	9	10	11	13
10M	41	42	42	42	48

Tabela 7: Tempo de Inclusão de 1000 Arquivos (em min) – maxFieldLength

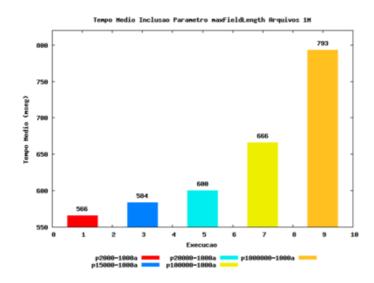


Figura 18: Tempo Médio de Inclusão maxFieldLength 1MB 1000 arquivos

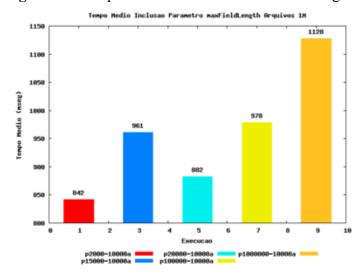


Figura 19: Tempo Médio de Inclusão maxFieldLength 1MB 10000 arquivos

Tam/Param	2000	15000	20000	100000	1000000
100k	76	79	80	80	79
1M	140	160	147	163	188

Tabela 8: Tempo de Inclusão de 10000 Arquivos (em min) – cacheSize

De maneira unânime em todos os testes realizados figuras 16, 17, 18, 19 e 20, o menor tamanho utilizado para o parâmetro *maxFieldLength*, respondeu com mais rapidez, independente do tamanho e quantidade de arquivos incluídos. Observa-se também que a diferença entre o menor tempo e o segundo menor tempo cresce à medida em que aumenta-se o número de arquivos e o tamanho destes (passa de 9mseg para 20 mseg para 1000 arquivos de 100Kbytes ao passo que passa de 18mseg para 40mseg quando o tamanho de arquivos cresce

para 1MByte). Aparentemente todo o arquivo é analisado e tem seus tokens extraídos, independente do tamanho do arquivo, porém o valor do parâmetro determina quantos desses *tokens* serão armazenados.

Figura 20: Tempo Médio de Inclusão maxFieldLength 10MB 1000 arquivos

3.5 Influência do parâmetro mergeFactor

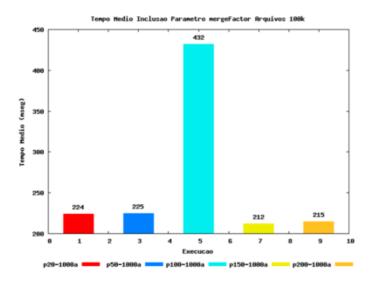


Figura 21: Tempo Médio de Inclusão mergeFactor100KB 1000 arquivos

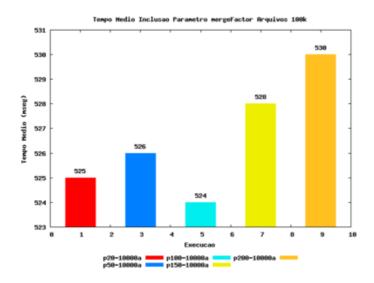


Figura 22: Tempo Médio de Inclusão mergeFactor 100KB 10000 arquivos

Tam/Param	20	50	100	150	200
100k	3	3	7	3	3
1M	9	9	10	10	9
10M	41	42	44	45	44

Tabela 9: Tempo de Inclusão de 1000 Arquivos (em min) – cacheSize

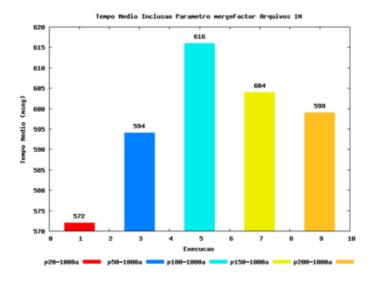


Figura 23: Tempo Médio de Inclusão mergeFactor 1MB 1000 arquivos

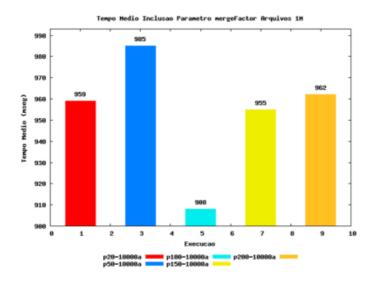


Figura 24: Tempo Médio de Inclusão mergeFactor 1MB 10000 arquivos

Tam/Param	20	50	100	150	200
100k	87	87	87	88	88
1M	159	164	151	159	160

Tabela 10: Tempo de Inclusão de 10000 Arquivos (em min) – cacheSize

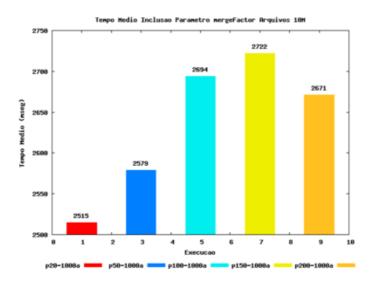


Figura 25: Tempo Médio de Inclusão mergeFactor 10MB 1000 arquivos

Observando as figuras 21, 23 e 25 é possível estabelecer a relação de que, quanto maior o tamanho do arquivo a ser incluído, um parâmetro menor obtêm um tempo menor de inclusão, sendo mais apropriado.

3.6 Influência do parâmetro minMergeDocs

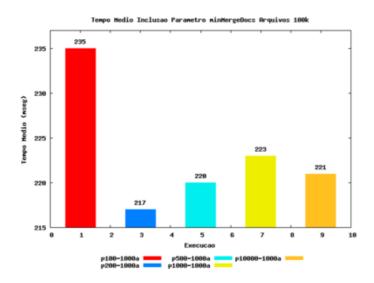


Figura 26: Tempo Médio de Inclusão minMergeDocs 100KB 1000 arquivos

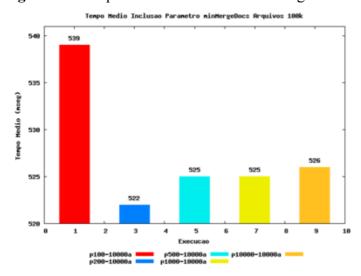


Figura 27: Tempo Médio de Inclusão minMergeDocs 100KB 10000 arquivos

Tam/Param	100	200	500	1000	10000
100k	3	3	3	3	3
1M	12	9	9	9	9
10M	45	43	43	42	43

Tabela 11: Tempo de Inclusão de 1000 Arquivos (em min) – cacheSize

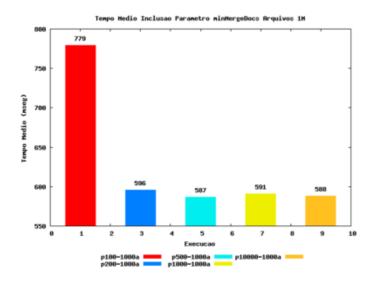


Figura 28: Tempo Médio de Inclusão minMergeDocs 1MB 1000 arquivos

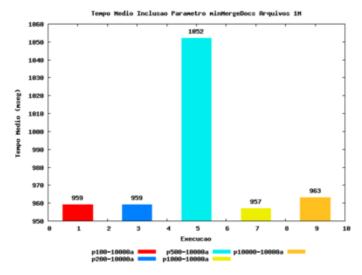


Figura 29: Tempo Médio de Inclusão minMergeDocs 1MB 10000 arquivos

Tam/Param	100	200	500	1000	10000
100k	89	87	87	87	87
1M	159	159	175	159	160

Tabela 12: Tempo de Inclusão de 10000 Arquivos (em min) – cacheSize

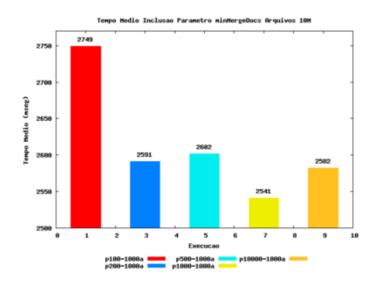


Figura 30: Tempo Médio de Inclusão minMergeDocs 10MB 1000 arquivos

Ao observar as figuras 26, 27, 28 e 30 conclui-se que independente do valor escolhido para minMergeDocs, com exceção do valor 100, que fornece o pior resultado, todos os outros valores testados não apresentam diferença significativa para tamanhos de arquivo menores que 10MBytes.

A figura 29 apresenta um padrão diferente das demais, porém, após a análise do ambiente, observa-se que justamente o parâmetro 500 para arquivos de tamanho 1MByte reflete o pior caso. Como *minMergeDocs* indica o número mínimo de arquivos a serem tratados para que o índice seja escrito e a máquina de testes possui aproximadamente 500MBytes de memória disponível para a execução deste teste, supõe-se que seja esse o caso onde é ocupada a maior quantidade de memória e o índice seja gravado nesse momento.

4 Análise de Resultados – Pesquisa de Arquivos

4.1 Influência do parâmetro bufferSize

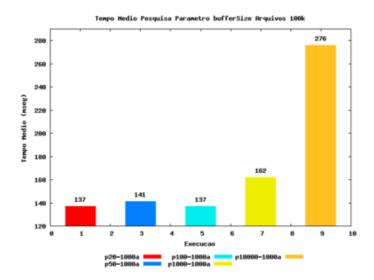


Figura 31: Tempo Médio de Pesquisa bufferSize 100KB 1000 arquivos

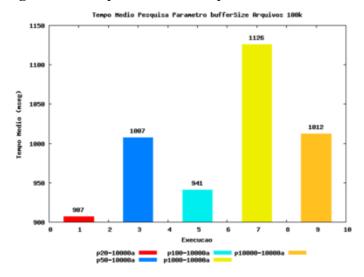


Figura 32: Tempo Médio de Pesquisa bufferSize 100KB 10000 arquivos

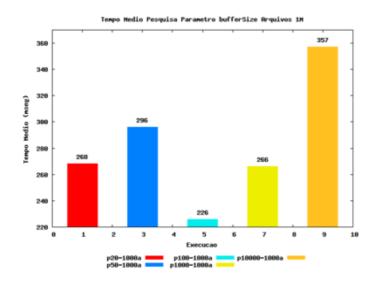


Figura 33: Tempo Médio de Pesquisa bufferSize 1MB 1000 arquivos

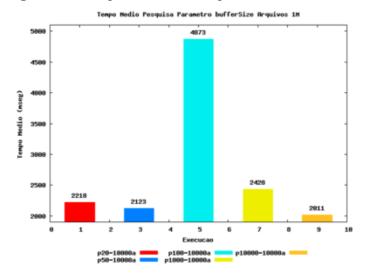


Figura 34: Tempo Médio de Pesquisa bufferSize 1MB 10000 arquivos

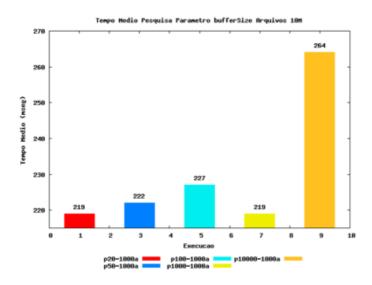


Figura 35: Tempo Médio de Pesquisa bufferSize 10MB 1000 arquivos

O tempo de pesquisa aumenta proporcionalmente ao número de arquivos incluídos no repositório. Por outro lado, o número de arquivos não influencia diretamente o tempo de busca quando mantêm-se o mesmo valor para o número de palavras indexadas (valor de *maxFieldLength*). Acredita-se que esse comportamento ocorra por causa do uso de memória cache para manter o conteúdo dos índices.

4.2 Influência do parâmetro cacheSize

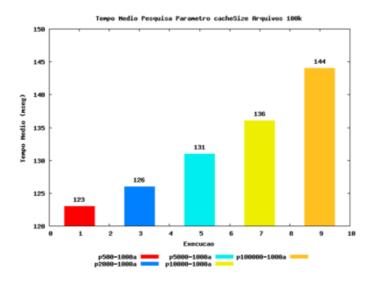


Figura 36: Tempo Médio de Pesquisa cacheSize 100KB 1000 arquivos

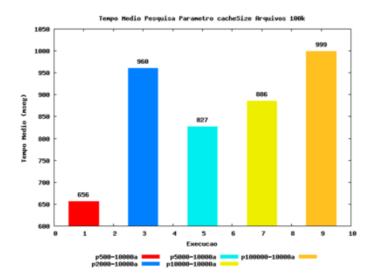


Figura 37: Tempo Médio de Pesquisa cacheSize 100KB 10000 arquivos

Observando-se a figura 36 é possível identificar o custo impingido pelo gerenciamento de uma memória cache maior para arquivos pequenos. Embora a diferença entre o menor valor (123) e o maior valor (144) seja pequena para um repositório pequeno, observa-se na figura 37 que essa diferença aumenta proporcionalmente ao número de arquivos dentro do repositório, mantendo um mesmo¹ padrão de crescimento.

¹ Acredita-se que fatores externos tenham contribuído para o desvio de padrão do valor 2.000 na figura 37.

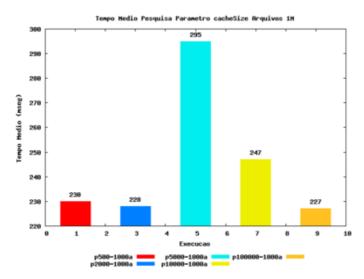


Figura 38: Tempo Médio de Pesquisa cacheSize 1MB 1000 arquivos

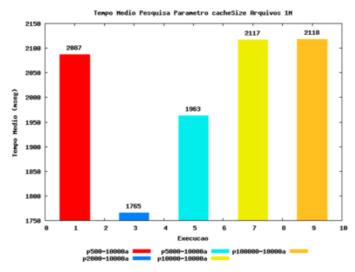


Figura 39: Tempo Médio de Pesquisa cacheSize 1MB 10000 arquivos

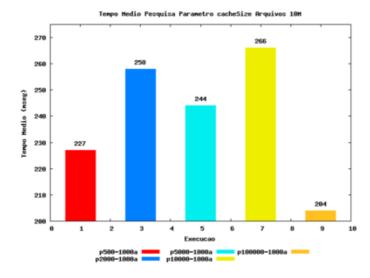


Figura 40: Tempo Médio de Pesquisa cacheSize 10MB 1000 arquivos

O tamanho do arquivo influencia diretamente o tamanho do parâmetro *cacheSize* que obtêm o melhor resultado segundo a relação: quanto maior o tamanho do arquivo, o maior valor do parâmetro obtêm o melhor resultado. A tabela 13 ilustra o melhor valor de *cacheSize* relacionado com o tamanho médio dos arquivos.

Tamanho	Valor
100KBytes	500
1MByte	2.000
10MBytes	10.000

Tabela 13: Comparação entre tamanho de arquivo e melhor valor para cacheSize

4.3 Influência do parâmetro extractorPoolSize

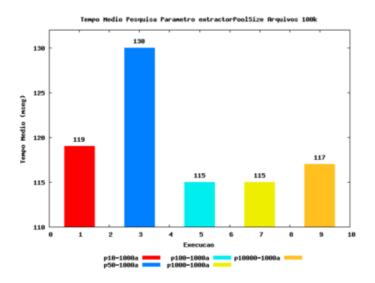


Figura 41: Tempo Médio de Pesquisa extractorPoolSize 100KB 1000 arquivos

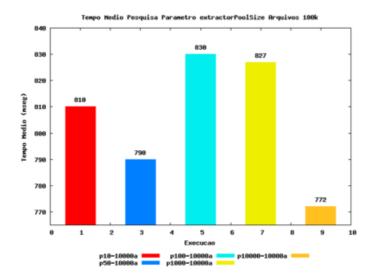


Figura 42: Tempo Médio de Pesquisa extractorPoolSize 100KB 10000 arquivos

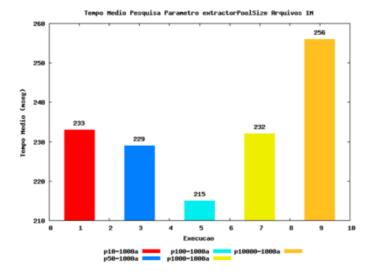


Figura 43: Tempo Médio de Pesquisa extractorPoolSize 1MB 1000 arquivos

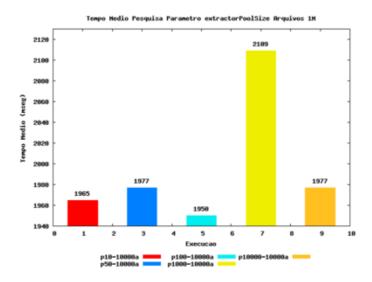


Figura 44: Tempo Médio de Pesquisa extractorPoolSize 1MB 10000 arquivos

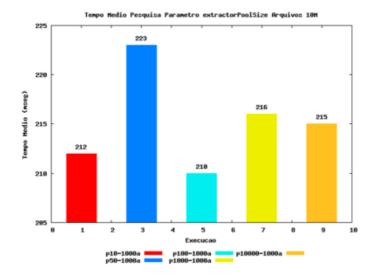


Figura 45: Tempo Médio de Pesquisa extractorPoolSize 10MB 1000 arquivos

Independente do número e tamanho dos arquivos pesquisados, o melhor valor para o parâmetro *extractorPoolSize* é 100. Analisando-se os parâmetros e ambiente observa-se uma relação (100 threads para ↔ 1.000 e 100 threads para ↔ 10.000 arquivos) entre o número de arquivos e o número de threads no pool, onde acredita-se que essa relação atinja sua melhor distribuição com o valor mencionado.

Acredita-se que eventos externos influenciaram o resultado obtido na figura 42. Independentemente, a diferença de tempo entre o melhor e o pior parâmetro é de apenas 58 millisegundos.

4.4 Influência do parâmetro maxFieldLength

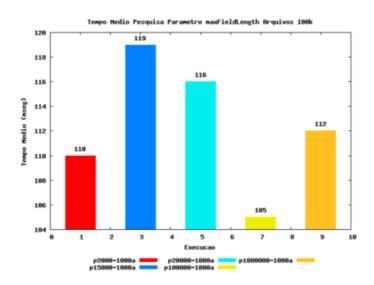


Figura 46: Tempo Médio de Pesquisa maxFieldLength 100KB 1000 arquivos

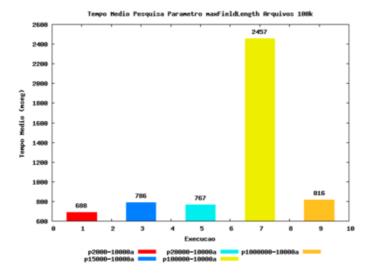


Figura 47: Tempo Médio de Pesquisa maxFieldLength 100KB 10000 arquivos

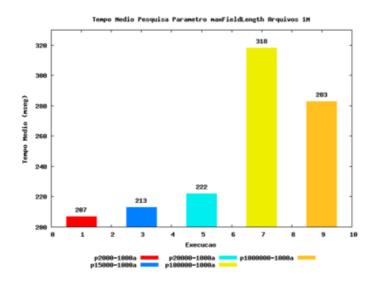


Figura 48: Tempo Médio de Pesquisa maxFieldLength 1MB 1000 arquivos

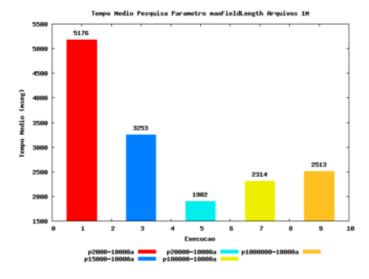


Figura 49: Tempo Médio de Pesquisa maxFieldLength 1MB 10000 arquivos

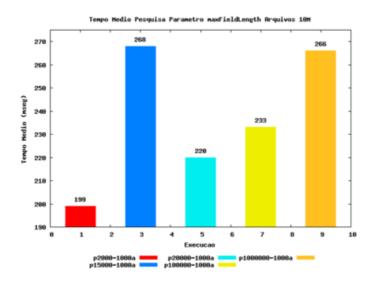


Figura 50: Tempo Médio de Pesquisa maxFieldLength 10MB 1000 arquivos

O parâmetro *maxFieldLength* estabelece a relação entre o tamanho do arquivo e os itens indexados na pesquisa. O preço a ser pago para arquivos de 100KB é de aproximadamente 7ms em média, aumentando para 134ms quando o tamanho do repositório aumenta. Esses valores foram obtidos pela diferença entre o menor tempo de resposta, que nesse caso não necessariamente quer dizer que encontrou o item, pelo tempo de execução com o maior valor de maxFieldLength, que indica que o maior número de itens dentro do documento serão indexados aumentando a chance de encontrar um termo pesquisado.

A tabela 14 ilustra as diferenças encontradas.

Tamanho / Número	1.000	10.000
100KBytes	7ms	134ms
1MByte	76 ms	611ms
10MBytes	67ms	n.d.

Tabela 14: Diferenca entre menor tempo de pesquisa e tamanho de palavras indexadas

4.5 Influência do parâmetro mergeFactor

Quanto menor o tamanho do fator de agregação, menor o tempo de resposta da pesquisa.

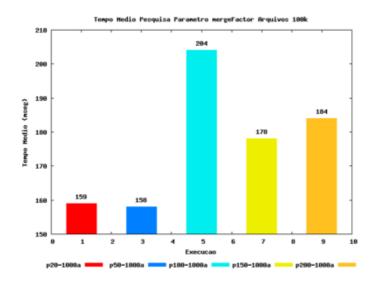


Figura 51: Tempo Médio de Pesquisa mergeFactor 100KB 1000 arquivos

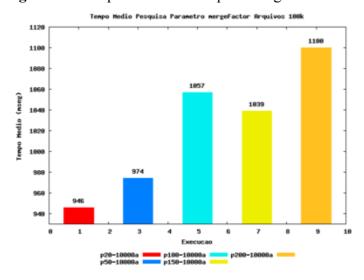


Figura 52: Tempo Médio de Pesquisa mergeFactor 100KB 10000 arquivos

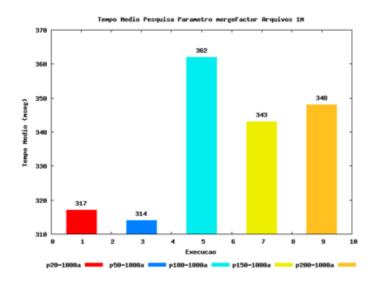


Figura 53: Tempo Médio de Pesquisa mergeFactor 1MB 1000 arquivos

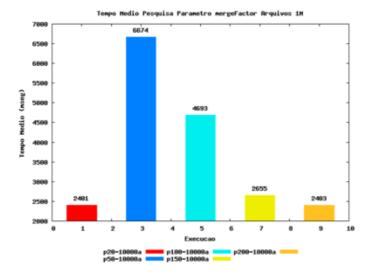


Figura 54: Tempo Médio de Pesquisa mergeFactor 1MB 10000 arquivos

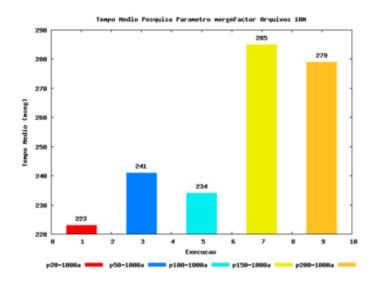


Figura 55: Tempo Médio de Pesquisa mergeFactor 10MB 1000 arquivos

4.6 Influência do parâmetro minMergeDocs

À medida em que o tamanho e número de arquivos crescem, o valor atribuído ao parâmetro deve ser aumentado proporcionalmente para obter-se melhor eficiência.

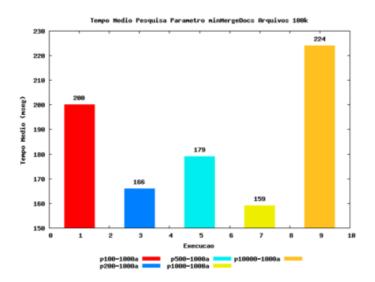


Figura 56: Tempo Médio de Pesquisa minMergeDocs 100KB 1000 arquivos

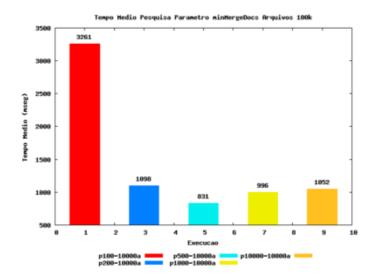


Figura 57: Tempo Médio de Pesquisa minMergeDocs 100KB 10000 arquivos

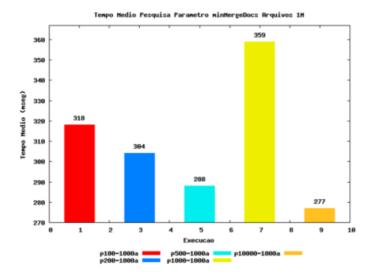


Figura 58: Tempo Médio de Pesquisa minMergeDocs 1MB 1000 arquivos

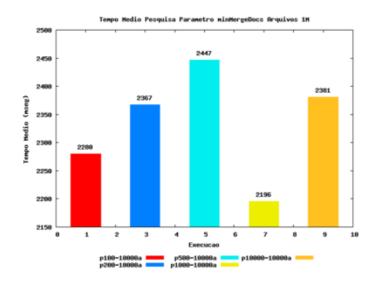


Figura 59: Tempo Médio de Pesquisa minMergeDocs 1MB 10000 arquivos

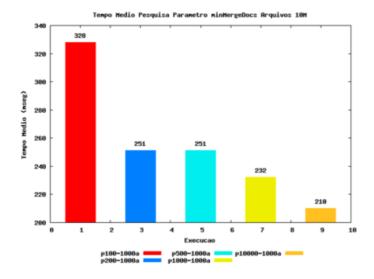


Figura 60: Tempo Médio de Pesquisa minMergeDocs 10MB 1000 arquivos

Não se chegou a uma relação a ser seguida para obter o melhor resultados para o parâmetro *minMergeDocs*. Observou-se, entretanto, que o tamanho do arquivo (100KB, 1MB, 10MB) tem pequena influência no tempo de resposta (200ms,318ms,320ms) do resultado final quando comparado com a quantidade de arquivos. Sugere-se refazer esse teste com uma configuração onde haja maior variação do número de arquivos incluídos para melhor análise do resultado.

5 Avaliação de Infra-Estrutura

5.1 Tamanhos de Repositório e Índices

A tabela 15 ilustra os resultados obtidos para diferentes tamanhos de arquivo e valores para o parâmetro *maxFieldLength*. O parâmetro *maxFieldLength* foi escolhido para este teste por influenciar o número de palavras que serão armazenadas nos índices de busca.

A influência de um parâmetro *maxFieldLength* maior se faz presente tanto no tamanho do repositório de BLOBs quanto na memória utilizada(vide tabela 17).

Tam./Núm.	1	10	100	1000	Param
Arquivos					
100KBytes	324K	1,4M	12M	115M	2000
100KBytes	340K	1,5M	13M	125M	100000
1MByte	1,3M	11M	103M	1017M	2000
1MByte	1,4M	12M	115M	1,2G	100000

Tabela 15: Tamanho de Arquivos versus Tamanho de BLOBs

Um aumento de 50 vezes no parâmetro causou um aumento de aproximadamente 20% no tamanho do armazenamento de BLOBs, dependendo do tamanho de arquivo utilizado. Esse comportamento era esperado, uma vez que para o maior valor (100.000) é atingido o final de arquivo antes de processar o número de *tokens* especificado.

A tabela 16 mostra o resultado do tamanho do banco de dados para o teste com os tamanhos de arquivo e valores diferentes para o parâmetro *maxFieldLength* do jackrabbit.

A mudança no valor do parâmetro *maxFieldLength* não influenciou o tamanho do banco de dados, como ocorreu com o tamanho do repositório de BLOBs.

Tam./Núm. Arquivos	1	10	100	1000	Param
100KBytes	76K	144K	816K	7,4M	2000
100KBytes	76K	144K	816K	7,4M	1000000
1MByte	76K	144K	816K	7,4M	2000
1MByte	76K	144K	816K	7,4M	1000000

Tabela 16: Tamanho de Arquivos versus Tamanho do Banco de Dados

Utilizando os valores presentes nas tabelas 15 e 16 é possível projetar aproximadamente a utilização de disco para um volume de arquivos.

5.2 Quantidade de Memória RAM Utilizada

Os valores a seguir foram obtidos executando-se um dump da memória utilizada pelo jboss na execução do teste. Os tamanhos referem-se exclusivamente ao processo do jboss. O momento "antes" foi definido como o ponto imediato antes da execução do teste de inserção de arquivos, enquanto que o momento "depois" refere-se ao tempo imediatamente posterior à execução do teste.

A tabela 17 ilustra a diferença da utilização total de memória quando utilizado o valor 1.000.000 e o valor 2.000. Essa tabela ilustra também a progressão de consumo de memória (em kilobytes) ao aumentar o número de inserções e o tamanho dos arquivos. É possível observar que a diferença entre a memória utilizada pode chegar a 38MBytes (100 arquivos,1MByte) dependendo da configuração utilizada.

Tam./Núm	1	10	100	1.000	10.000	Param
. Arquivos						
100KBytes	326	3890	15785	35225	84592	1.000.000
_	267	1216	10136	64167	49538	2.000
Diferença(59	2.674	5.649	-28.902	35.054	_
p 1M-2k)		ļ	,	!	T.	,
	"					
Tam./Núm	1	10	100	1.000	10.000	Param
. Arquivos		"	•	•	•	"
1MByte	320	16321	51931	76848	82325	1.000.000
,	333	1013	13433	63938	43661	2.000
Diferença(-13	15.308	38.498	12.910	38.664	_
p 1M-2k)		'	•	•	•	r.

Tabela 17: Comparação entre diferença de parâmetro e Quantidade de Memória RAM utilizada - em KBytes

Utilizando-se esses valores é possível calcular aproximadamente o consumo de memória durante a inclusão de arquivos e operação do sistema Scriba. Observe que esses valores são *apenas para os dados utilizados*, descartada a memória utilizada pelo servidor de aplicação.

6 Resultados Obtidos

Os testes serviram para mostrar que a correta configuração dos parâmetros do jackrabbit influencia bastante no desempenho e resultados obtidos, tanto na inclusão de arquivos, quanto na busca dos mesmos e nos resultados de busca.

Para maximizar os resultados obtidos na pesquisa, é necessário utilizar o maior valor possível para o parâmetro *maxFieldLength*, o que implica em um tempo de resposta mais lento na inclusão e um pequeno atraso na pesquisa, porém agregando mais informações no resultado da pesquisa. Um parâmetro *maxFieldLength* grande reduz grandemente as possibilidades de o usuário dizer: "Não Encontrei o texto X que está no arquivo Y quando pesquisei no Documentador".

Quanto maior o tamanho da memória disponível para o servidor de aplicação menor o tempo de resposta obtido nas pesquisas para valores de *cacheSize*.

7 Conclusão

O planejamento do repositório de dados requer uma estimativa prévia da quantidade *inicial* de documentos a serem incluídos no repositório¹.

Antes porém de estabelecer o tamanho médio dos arquivos é importante definir qual abordagem será utilizada na indexação de termos dos documentos:

indexação máxima

onde atribui-se um maior valor para o número de palavras a serem indexadas (*maxFieldLength*), resultando em uma busca mais ampla nos documentos armazenados, porém com um tempo de busca maior.

indexação intermediária

onde atribui-se um valor arbitrário para o número de palavras a serem indexadas, onde o tempo de resposta à pesquisa tende a ser mais rápido, porém com partes dos documentos inseridos não indexadas. O revés dessa abordagem é que o usuário pode procurar por um termo que esteja em um documento armazenado e não encontrá-lo.

Após definida essa abordagem, estima-se o tamanho e quantidade média dos arquivos para atribuir-se um valor inicial para as configurações. Obtendo-se um valor médio aproximado para o tamanho e quantidade dos arquivos, é possível, extrapolando os dados apresentados nesse documento, formular a melhor relação para os parâmetros de configuração do *jackrabbit* e assim otimizar o tempo de inserção de arquivos em lote.

A seção 5 fornece dados iniciais para o planejamento da ocupação de espaço em disco nos servidores.

Para repositórios já implantados, uma maneira de melhorar a performance é estabelecer um novo valor para os parâmetros do *jackrabbit* e proceder a re-indexação do repositório. Como observado nos testes, com o crescimento do número de arquivos alguns parâmetros, tais como *bufferSize*, *cacheSize*, *extractorPoolSize* e *maxFieldLength*, têm seus valores ótimos deslocados para mais ou para menos dependendo do parâmetro.

7.1 Configurações Recomendadas

A tabela 18 apresenta uma estimativa de espaço ocupado médio para o repositório e tamanho aproximado de arquivo.

I	Essa estimativa e	é necessária apenas par	a agilizar a inclusão	de grandes vo	olumes de dados.
---	-------------------	-------------------------	-----------------------	---------------	------------------

Número	Tamanho	BLOBs	Índice	TOTAL
Arquivos				
1.000	100 KB	130 MB	10 MB	≈ 150 MB
	1 MB	1.5 GB	15 MB	≈ 1.7 GB
10.000	100 KB	1.6 GB	71 MB	≈ 1.8 GB
	1 MB	16 GB	72 MB	≈ 18 GB

Tabela 18: Estimativa de Tamanho Necessário

A seguir listamos as configurações recomendadas para uma máquina com as características apresentadas na seção 2.

7.1.1 Repositório com Tamanho Médio de Arquivos 100-300KBytes

Com base nos dados presentes no repositório do Documentador, sugere-se a mudança de configuração para os parâmetros do jackrabbit apresentados a seguir.

Parâmetro	Valor Sugerido	
bufferSize	100	
cacheSize	100.000	
extractorPoolSize	1.000	
maxFieldLength	2.147.483.647	
mergeFactor	150	
minMergeDocs	200	

Tabela 19: Configuração Sugerida para Valores do Jackrabbit – Arquivos de Tamanho Médio 100KB

7.1.2 Repositório com Tamanho Médio de Arquivos 1-3MBytes

	<u> </u>	
Parâmetro	Valor Sugerido	
bufferSize	50	
cacheSize	2.000	
extractorPoolSize	50	
maxFieldLength	2.147.483.647	
mergeFactor	100	
minMergeDocs	1.000	

Tabela 20: Configuração Sugerida para Valores do Jackrabbit – Arquivos de Tamanho Médio 1MB

7.1.3 Repositório com Tamanho Médio de Arquivos 10MBytes

•	•
Parâmetro	Valor Sugerido
bufferSize	50
cacheSize	100.000
extractorPoolSize	10.000
maxFieldLength	2.147.483.647
mergeFactor	20
minMergeDocs	1.000

Tabela 21: Configuração Sugerida para Valores do Jackrabbit – Arquivos de Tamanho Médio 10MB

7.1.4 Tempo Utilizado - Configurações Recomendadas

A tabela 22 ilustra o tempo utilizado para a inclusão de arquivos em lote no scriba para tamanhos de arquivo de 100KB, 1MB e 10MB para a máquina mencionada na seção 2. Comparam-se os tempos de inclusão para o parâmetro maxFieldLength com valor *1.000.000* e *2.147.483.647* (que é o maior valor possível para esse parâmetro).

NumArq/maxField Length	1.000.000	2.147.483.647	Tamanho
	5	5	100KB
1.000	38	39	1MB
	45	55	10MB
10.000	89	88	100KB
	199	230	1MB

Tabela 22: Tempo de Inclusão Arquivos (em min) – configuração recomendada

7.1.5 Memória RAM utilizada para Configurações Recomendadas

A quantidade de memória expressa na tabela 23 indica apenas a quantidade de memória necessária para os dados, sem contar a memória utilizada para o servidor de aplicação jboss e para a aplicação scriba.

Tam./Núm.	1.000	10.000	
Arquivos			
100KBytes	63.282	95.231	
1MBytes	37.702	142.894	
10MBytes	125.805	_	

Tabela 23: Quantidade de memória RAM utilizada (em KBytes) para as configurações recomendadas, com valor de parâmetro maxFieldLength igual 2.147.483.647

7.2 Perguntas Frequentes

1. Qual infraestrutura deverá ser tratada com a GTI para atender determinada demanda ao utilizar o Documentador ?

R

A infraestrutura irá depender da demanda específica. Os resultados apresentados neste documento ajudam o analista a estabelecer uma previsão de espaço ocupado e memória utilizada no servidor.

2. Existe um controle de performance?

R:

Os controles de performance são os seguintes:

- * Ambiente
 - A. Quantidade de Memória Disponível para o servidor JBoss
 - B. Quantidade de Memoria Disponível para a aplicação Scriba
 - C. Número de Conexões ao Banco de Dados
- * Aplicação
 - D. Melhoria nas Consultas executadas pela aplicação.
 - E. Configurações do Jackrabbit apresentadas neste documento(seção 7.1)
- 3. Vou poder garantir ao cliente que ele terá um bom tempo de resposta?

R:

O acesso do cliente ao documentador vai depender de uma série de fatores que a CELEPAR não tem como controlar, por exemplo, largura de banda até a máquina cliente.

O que pode ser garantido é que, o acesso no servidor e aplicação será rápido e eficiente, porém não se pode garantir (sem um contrato com SLA com a operadora de telefonia) qualquer tipo de velocidade de acesso ao cliente.

O tempo de resposta que podemos informar é o tempo de resposta da busca no servidor.

4. Posso ter certeza de que ao informar determinada palavra, o sistema de busca me trará todos os resultados possíveis e sem falhas?

R:

É possível ter uma grande probabilidade de encontrar a palavra, mas não é possível garantir que o resultado da busca seja bem sucedido em 100% das vezes. O resultado da busca depende dos termos indexados e do algoritmo utilizado para indexação desses termos quando o documento é incluído no scriba, algoritmo esse

que varia de acordo com o tipo de arquivo utilizado.

O que podemos fazer (e estamos fazendo) é aumentar a quantidade de elementos que são elegíveis para indexação e busca, de modo a reduzir ao mínimo a possibilidade de uma busca ser mal-sucedida.

5. Quando publico, X documentos automaticamente, qual o meu tempo de resposta?

R:

O tempo de inclusão pode ser estimado estrapolando-se os números fornecidos neste documento (seção 3) para a realidade do cliente. Esses números irão variar dependendo da massa de dados (número e tamanho de documentos) a serem inseridos.

6. Qual infraestrutura preciso ter para ter uma resposta X (rápida) durante a busca?

R:

Em primeiro lugar é preciso determinar o que é uma resposta rápida. A seção 4_ ilustra os resultados de busca para os diferentes parâmetros de configuração do jackrabbit. O tempo de resposta é composto de vários fatores, dentre eles:

- * tempo de comunicação do cliente com o servidor.
- * tempo de comunicação do servidor scriba com o banco de dados.
- * tempo de busca do banco de dados.
- * tempo de retorno da busca para o servidor scriba.
- * tempo de recuperação do arquivo no disco no servidor scriba (no caso de ter um BLOB associado).
- * tempo de retorno da resposta do servidor ao cliente.

Vários fatores interferem no tempo de resposta do servidor, sendo que a quantidade de memória disponível para a aplicação (Scriba) e a velocidade de acesso ao banco de dados (número de conexos no *pool*) são fatores determinantes.

7. Qual a melhor infraestrutura para cargas de Documentos um a um e com bom tempo de resposta na recuperação da busca?

R:

A infraestrutura vai variar de acordo com o número de usuários acessando simultâneamente.

8. Qual a melhor infraestrutura para carga de documentos em massa e com bom tempo de resposta, tanto na carga quanto na busca?

R:

Um fator importante é a quantidade de memória disponível para o servidor de aplicação.

9. Qual a melhor infraestrutura para ter uma boa performance geral no uso do

Documentador?

R:

São vários os itens a serem seguidos:

- i. Verificar o número de usuários simultâneos e aumentar o número de conexões no *pool* de acesso ao banco de dados.
- ii. Seguir a orientação para configuração do jackrabbit recomendada neste documento na seção 7.1 de acordo com o número e tamanho de arquivos no repositório.