

SECRETARIA DE ESTADO DA INDÚSTRIA, DO COMÉRCIO E DO TURISMO MINERAIS DO PARANÁ S.A. - MINEROPAR

PROJETO RIQUEZAS MINERAIS

Avaliação do Potencial Mineral e Consultoria Técnica à Prefeitura Municipal de Bituruna

RELATÓRIO FINAL

Curitiba Setembro de 2001

GOVERNO DO ESTADO DO PARANÁ

Jaime Lerner Governador

SECRETARIA DE ESTADO DA INDÚSTRIA, DO COMÉRCIO E DO TURISMO

Eduardo Francisco Sciarra Secretário

MINERAIS DO PARANÁ S.A. - MINEROPAR

Omar Akel Diretor Presidente

Marcos Vitor Fabro Dias Diretor Técnico

Heloísa Monte Serrat de Almeida Bindo Diretora Administrativa Financeira

PREFEITURA MUNICIPAL DE BITURUNA

Remi Ranzollin Prefeito

Evaldo Lunardelli Camargo Filho Vice-Prefeito

EQUIPE EXECUTORA

Edir Edemir Arioli Gerente do Projeto

Diclécio Falcade Gerente Regional do Projeto

Clóvis Roberto da Fonseca Técnico em mineração

EQUIPE DE GESTÃO DA INFORMAÇÃO

Donaldo Cordeiro da Silva Maria Elizabeth Eastwood Vaine Geólogos

> Miguel Ângelo Moreti José Eurides Langner Digitalizadores

Carlos Alberto Pinheiro Guanabara Economista

SUMÁRIO

Apresentação	1
Resumo	
Introdução	3
Geografia	
Geologia	
Recursos minerais	
Produção mineral	24
Direitos minerários	26
Gestão ambiental	31
Gestão territorial	38
Conclusões e recomendações	
Referências bibliográficas	

Anexos

Fotografias de campo Modelo de licença para exploração de substância mineral Laudos de ensaios tecnológicos Base planialtimétrica do município

APRESENTAÇÃO

O Paraná vive hoje um processo de industrialização acelerada, com base nos seus recursos humanos excepcionais, na infra-estrutura de transportes eficiente, na energia abundante e no invejável potencial de seus recursos naturais. No que diz respeito ao aproveitamento dos recursos minerais, a ação a nível de município tem sido priorizada pela MINEROPAR porque eles constituem a base de uma cadeia produtiva que complementa a da agroindústria.

Nos últimos anos, a MINEROPAR atendeu com avaliações de potencial mineral cerca de 120 municípios paranaenses, tendo contribuído para a geração de negócios de pequeno e médio porte em boa parte deles. Na quase totalidade dos casos, esses serviços foram executados a pedido das prefeituras municipais. Em Bituruna, cônscia da importância da indústria mineral para a economia do município, a Prefeitura buscou esta parceria, cujos frutos contribuirão para o seu crescimento e progresso.

A avaliação do potencial mineral de Bituruna foi executada, portanto, com o objetivo de investigar se existem reservas potenciais de bens minerais que atendam as necessidades das obras públicas ou justifiquem investimentos na indústria de transformação. Ao mesmo tempo, a equipe técnica da Empresa prestou assistência à Prefeitura no que diz respeito a questões de gestão territorial e do meio físico. Para a realização deste objetivo, a equipe da MINEROPAR utilizou os métodos e as técnicas mais eficientes disponíveis, chegando a resultados que nos permitiram encontrar as respostas procuradas. São estes resultados que apresentamos neste relatório.

Esperamos, com este trabalho, estar contribuindo de forma efetiva para o fortalecimento da indústria mineral em Bituruna e no Paraná, com benefícios que se propaguem para a população do município e do Estado.

Omar Akel
Diretor Presidente

RESUMO

O município de Bituruna foi atendido com serviços de prospecção mineral e consultoria ambiental, pelo Projeto RIQUEZAS MINERAIS, tendo em vista promover a geração de oportunidades de investimento em negócios relacionados com a indústria mineral e encaminhar soluções para os problemas relacionados com a gestão territorial. O presente relatório registra os resultados da avaliação da potencialidade do território do município em relação a recursos minerais de interesse estratégico para a Prefeitura e a coletividade. O município de Bituruna detém um potencial mineral interessante, no que diz respeito às argilas aplicáveis na indústria da cerâmica estrutural. Recomenda-se, por isto, que a Prefeitura promova a pesquisa sistemática dos depósitos amostrados pela equipe do Projeto RIQUEZAS MINERAIS, tendo em vista confirmar este potencial. Tendo em vista assessorar a Prefeitura de Bituruna no aperfeiçoamento técnico da pavimentação poliédrica, que é largamente usada no município, recomenda-se utilizar o manual Paralelepípedos e Alvenaria Poliédrica: Manual de Utilização, da MINEROPAR. Bituruna tem abundância de saibro para as obras de conservação das estradas municipais, dispensando preocupações com a localização de jazidas. Esta abundância resulta da morfologia especial do relevo da região, que favorece a formação de solos rasos e imaturos, que são os materiais preferenciais para este uso. As proporções de argilas e fragmentos de basalto resultam favoráveis e tornam o saibro de origem basáltica excelente material de empréstimo para as obras viárias do município. Por solicitação da Prefeitura, foram feitos perfis de reconhecimento na localidade de São Vicente para a identificação de saibreiras, mas não foi possível localizar este tipo de depósito. Bituruna situa-se na zona hidrogeológica mais desfavorável do Terceiro Planalto Paranaense, dentro da qual as vazões de produção não excedem 25 m³/hora e são frequentes os pocos secos. Isto requer das autoridades municipais a adoção de medidas de preservação dos mananciais de superfície. Quando indispensável, a perfuração de poços exige muito conhecimento do comportamento da água subterrânea nesta região, por parte das empresas contratadas. Elas devem trabalhar com critérios técnicos adequados e demonstrar experiência comprovada na região, onde os controles estruturais sobre a distribuição das vazões dependem da combinação de fraturas regionais com zonas permeáveis no basalto. Com o propósito de orientar a Prefeitura nas providências necessárias à obtenção da autorização do DNPM para a produção de bens minerais utilizáveis em obras públicas, pelo regime de extração, transcrevemos as instruções fornecidas por este órgão do Ministério de Minas e Energia. As informações oferecidas neste relatório a respeito da gestão ambiental visam apenas esclarecer os responsáveis, no município, não substituindo a intervenção do técnico legalmente habilitado junto ao CREA. A MINERO-PAR dispõe de informações adicionais, que podem ser obtidas pela Prefeitura mediante acesso à página da Internet ou por solicitação à Diretoria Executiva da Empresa.

INTRODUÇÃO

Objetivo global

O Projeto **RIQUEZAS MINERAIS** foi executado pela MINEROPAR, no município de Bituruna, com o objetivo de promover a geração de oportunidades de investimento em negócios relacionados com a indústria mineral e encaminhar soluções para os problemas relacionados com a gestão territorial.

Objetivos específicos

O objetivo global do projeto foi alcançado mediante a realização dos seguintes objetivos específicos:

- Avaliação da potencialidade do território municipal de Bituruna em relação a recursos minerais de interesse estratégico para a Prefeitura e a coletividade.
- Prestação de consultoria técnica à Prefeitura Municipal sobre problemas relacionados com a gestão territorial, o planejamento urbano, o aproveitamento de jazidas para a execução de obras públicas e outros relacionados com a geologia, a mineração e o meio físico.
- Orientação à Prefeitura Municipal no que diz respeito ao controle das atividades licenciadas de mineração e à arrecadação dos tributos, taxas e emolumentos decorrentes.

Metodologia de trabalho

Esses objetivos foram realizados mediante a aplicação da metodologia de trabalho que envolveu as atividades abaixo relacionadas.

Levantamento da documentação cartográfica e legal

Foi executado levantamento, recuperação e organização dos mapas topográficos e geológicos, bem como das fotografias aéreas que cobrem a região de afloramento das formações de interesse, no município. Foram também levantados os direitos minerários vigentes no município, existentes no SIGG - Sistema de Informações Geológicas e Geográficas da MINEROPAR e baseados nos dados oficiais do DNPM – Departamento Nacional da Produção Mineral.

Digitalização da base cartográfica

A base cartográfica do município foi digitalizada, em escala de 1:100.000, a partir das folhas topográficas de União da Vitória (SG-22-Y-B-III) e Palmas (SG-22-Y-B-II), editadas na mesma escala pelo Serviço Geográfico do Ministério do Exército, em 1974, com base na cobertura aerofotográfica de 1964. Estas folhas topográficas não contêm as divisas municipais, que foram obtidas de outros mapas, o que pode prejudicar em

alguns locais a correta demarcação dos limites, quando não coincidem com feições geográficas mapeáveis, tais como rios e coordenadas geográficas.

Fotointerpretação preliminar

Foram delimitadas nas fotografias aéreas, em escala de 1:25.000, as zonas de interesse, para seleção de áreas para a execução de perfis geológicos e coleta de amostras. Foram também localizadas nas fotografias aéreas as zonas favoráveis à ocorrência de argilas, o lixão da cidade, a estação de captação d'água, pedreiras e outros pontos de interesse para o projeto.

Levantamento de campo

Foram executados perfis geológicos nas áreas de interesse, tais como depósitos de argilas de uso cerâmico e uma fonte de água sulfurosa, com coleta de amostras para execução de análises físico-químicas e bacteriológicas. Paralelamente, foi realizado o cadastramento da atividade mineral existente no município, cujo território foi submetido a reconhecimento geológico geral, para complementação da base geológica existente.

Consultoria técnica

Foi prestado atendimento à Prefeitura Municipal, com orientação técnica sobre questões ligadas à mineração, ao meio ambiente, à gestão territorial, aos riscos geológicos, ao controle das atividades licenciadas e outras questões afins.

Execução de ensaios de laboratório

Os ensaios físicos e tecnológicos foram realizados no SELAB - Serviço de Laboratório da MINEROPAR, sobre amostras de argilas coletadas durante o levantamento geológico. Os ensaios foram feitos para fornecer à Prefeitura informações básicas sobre a qualidade dos bens minerais existentes em Bituruna. A análise físico-química e bacteriológica da água sulfurosa da fonte da represa de Salto Segredo foi realizada no Laboratório de Pesquisas Hidrogeológicas - LPH, da Universidade Federal do Paraná.

Elaboração da base geológica

O mapa geológico do município foi elaborado, em escala de 1:300.000, a partir do Mapa Geológico do Estado do Paraná, cuja escala original é 1:650.000, disponível no SIGG da MINEROPAR.

Análise e interpretação de dados

Os resultados do levantamento geológico, dos ensaios de laboratório foram compilados, confrontados e interpretados, tendo em vista a avaliação de potencialidade dos diferentes materiais amostrados para aproveitamento.

Elaboração do Relatório Final

A redação e edição do Relatório Final envolveu a descrição da metodologia adotada, apresentação e discussão dos dados coletados em campo e laboratório, conclusões e recomendações para o aproveitamento das matérias-primas de interesse da Prefeitura Municipal e para o encaminhamento de soluções aos problemas relacionados com o meio físico.

Atividades e cronograma de execução

Ao início dos trabalhos, a equipe da MINEROPAR foi recepcionada pelo Prefeito de Bituruna, Sr. Remi Ranzollin, acompanhado de assessores e secretários, que demonstraram o maior interesse em se valer dos serviços do Projeto **RIQUEZAS MINERAIS**. Na oportunidade, o Gerente Regional do Projeto expôs os objetivos e a metodologia geral do trabalho, enquanto o vice-Prefeito pôs à disposição da equipe a estrutura da prefeitura, em cumprimento dos termos da cooperação técnica.

O Quadro 1 apresenta a seqüência das atividades realizadas no município de Bituruna. Os trabalhos de campo desenvolveram-se na terceira e quarta semanas do mês de julho de 2001.

Quadro 1. Cronograma físico de execução.

ATIVIDADES	SEMANAS								
ATIVIDADES	1	2	3	4	5	6			
Levantamento da documentação cartográfica									
Fotointerpretação preliminar									
Digitalização da base cartográfica									
Levantamento de campo									
Consultoria técnica									
Digitalização da base geológica									
Ensaios de laboratório									
Análise e interpretação de dados						·			
Relatório final									

GEOGRAFIA1

Localização e demografia

Segundo R. Maack, podem ser delineadas no Estado do Paraná, com base na configuração do relevo, quatro grandes paisagens naturais: o Litoral, o Primeiro Planalto ou de Curitiba, o Segundo Planalto ou de Ponta Grossa e o Terceiro Planalto ou de Guarapuava. O Terceiro Planalto, por sua vez, é dividido pelos rios Tibagi, Ivaí, Piquiri e Iguaçu, em cinco compartimentos: (a) planalto de Cambará e São Jerônimo da Serra; (b) planalto de Apucarana; (c) planalto de Campo Mourão; (d) planalto de Guarapuava; e (e) planalto de Palmas, a sul do rio Iguaçu.

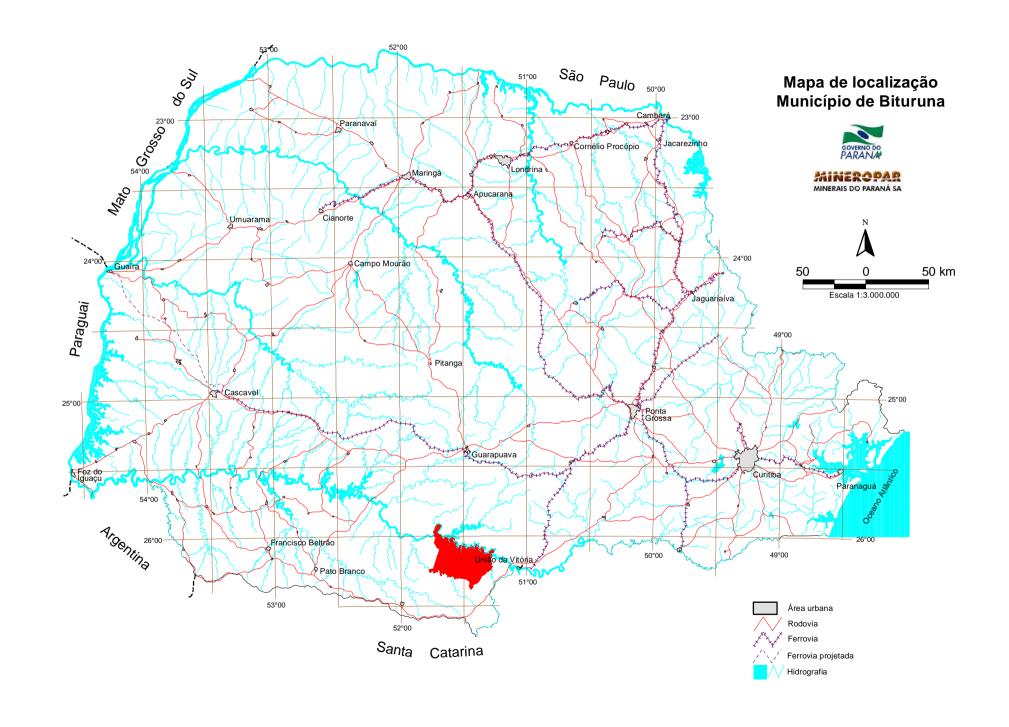
Bituruna situa-se na região Sudeste do Paraná, no domínio do Terceiro Planalto Paranaense e do planalto de Palmas, distante 317 km a sudoeste de Curitiba e 15 km a sudoeste de União da Vitória. O aeroporto mais próximo dista 133 km, localizado no município de Guarapuava. O mapa da página seguinte apresenta a localização geográfica do município dentro do Estado Paraná. Bituruna faz divisa com os municípios de Cruz Machado, General Carneiro, Palmas, Pinhão, Porto Vitória e União da Vitória.

O município abrange uma superfície de 1.238,121 km², distribuídos ao longo de aproximadamente 10 km na direção leste-oeste e 25 km na direção norte-sul. A sede urbana ocupa um total aproximado de 1.200 hectares. A população de 15.700 habitantes divide-se entre 7.502 residentes na zona urbana e 8.198 na zona rural, com uma densidade demográfica de 12,68 hab/km².

Fisiografia

Com altitude média de 900 m acima do nível do mar, o relevo de Bituruna apresenta a cota máxima de 1.275 m no divisor d'águas do rio Iratim, próximo à Serra do Irati. A cota mais baixo do território é marcado pela barra do rio Criciúma com o Lageado do Saltinho, no extremo nordeste do município, com cotas em torno de 720 m.

A distribuição do relevo ao longo do território de Bituruna é mais ou menos homogênea, embora fortemente ondulado, com desníveis de até 100 m ao longo dos vales escavados nos derrames de basalto.


Hidrografia

O município de Bituruna é banhado por uma densa rede de drenagem com vergência dominante para norte, no sentido do rio Iguaçu, dentro da qual dominam de leste para oeste os rios Iratizinho, Jararaca, Jacutinga, Herval e Iratim, além de numerosos afluentes e outros córregos.

A sede municipal situa-se no vale do rio Lajeado do Erval, afluente do rio Jararaca, responsável pelo abastecimento da água consumida pela população de Bituruna.

-

¹ Fontes: IBGE/Base Pública de Dados, 2000.

Clima e solos

De acordo com dados do IBGE, a região caracteriza-se por um clima subtropical úmido, mesotérmico, com verões frescos e invernos severos, sendo freqüentes as geadas. As chuvas concentram-se nos meses de verão e não há estação seca definida. A temperatura média é superior a 22°C no verão e fica abaixo de 18°C no inverno. A precipitação pluviométrica média é de 268 mm/ano, com a máxima de 534 mm registrada em outubro e a mínima de 77 mm em março.

Refletindo a geologia, o clima e o relevo da região, os solos predominantes no município são: (a) latossolos; (b) associação de solos litólicos, afloramentos de rocha alterada e colúvios; e (c) solos aluviais.

Os latossolos ocupam áreas de relevo aplainado, na porção sudoeste do município, onde favorecem as atividades agrícolas. As associações de solos litólicos com afloramentos de rocha alterada e colúvios ocorrem praticamente em boa parte do território do município. Elas podem variar desde porções essencialmente rochosas, destituídas de solo, até solos desenvolvidos, porém com grande quantidade de blocos e matacões. Os solos aluviais, bastante restritos em Bituruna, são encontrados ao longo das várzeas dos rios Jararaca, Iratinzinho e outros, constituídos pela deposição de materiais derivados da alteração de basalto.

Aspectos sócio-econômicos

Com um Produto Interno Bruto (PIB) equivalente a R\$ 29.541.383 e um PIB *per ca*pita de R\$ 2.222, o município ostenta uma economia baseada fundamentalmente nos serviços (48,64%), na indústria (29,55%) e na agropecuária (21,81%). Madeira, móveis e milho são os principais produtos do município.

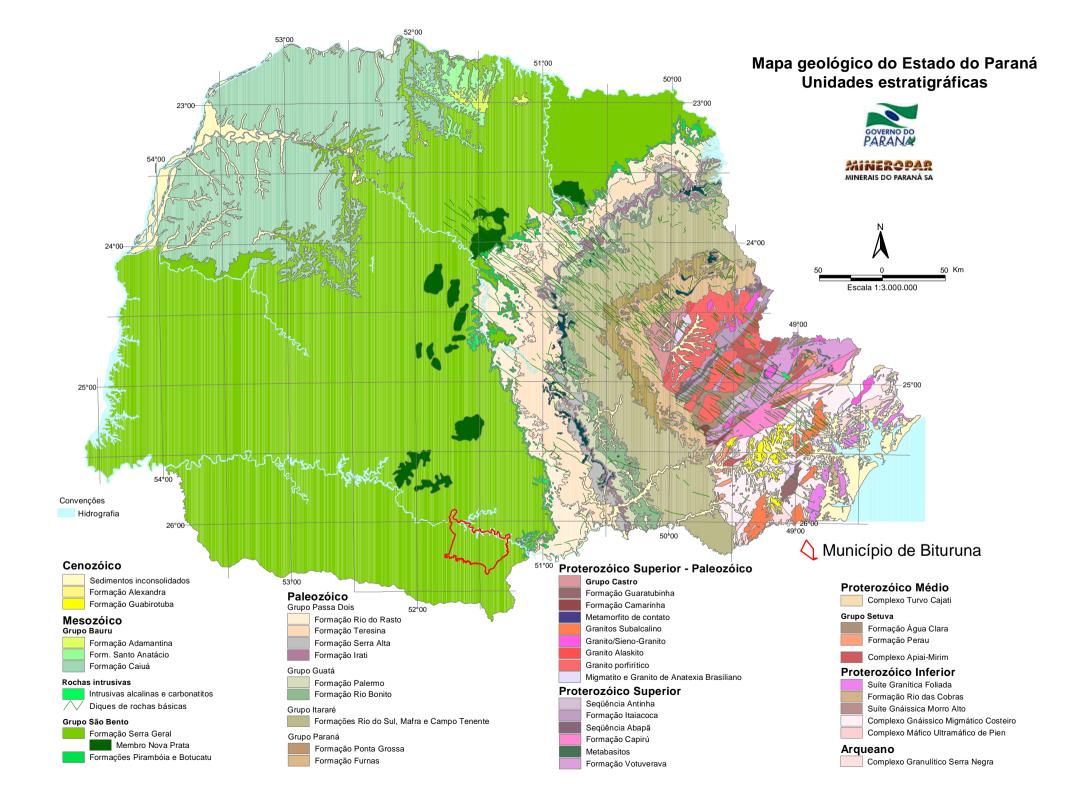
O setor terciário apresenta o maior número de estabelecimentos registrados no comércio varejista, com 140 dedicados aos ramos de alimentos, varejo em geral e casas especializadas em móveis, vestuário, materiais de construção, ferragens e produtos farmacêuticos, entre outros, e 16 estabelecimentos prestadores de serviços propriamente ditos, tais como, escolas, dentistas, despachantes, etc. Com 112 estabelecimentos registrados, a indústria contribui com a segunda maior parcela do PIB de Bituruna, sendo a produção de móveis, vestuário, laticínios, esquadrias e produtos alimentícios as suas principais atividades.

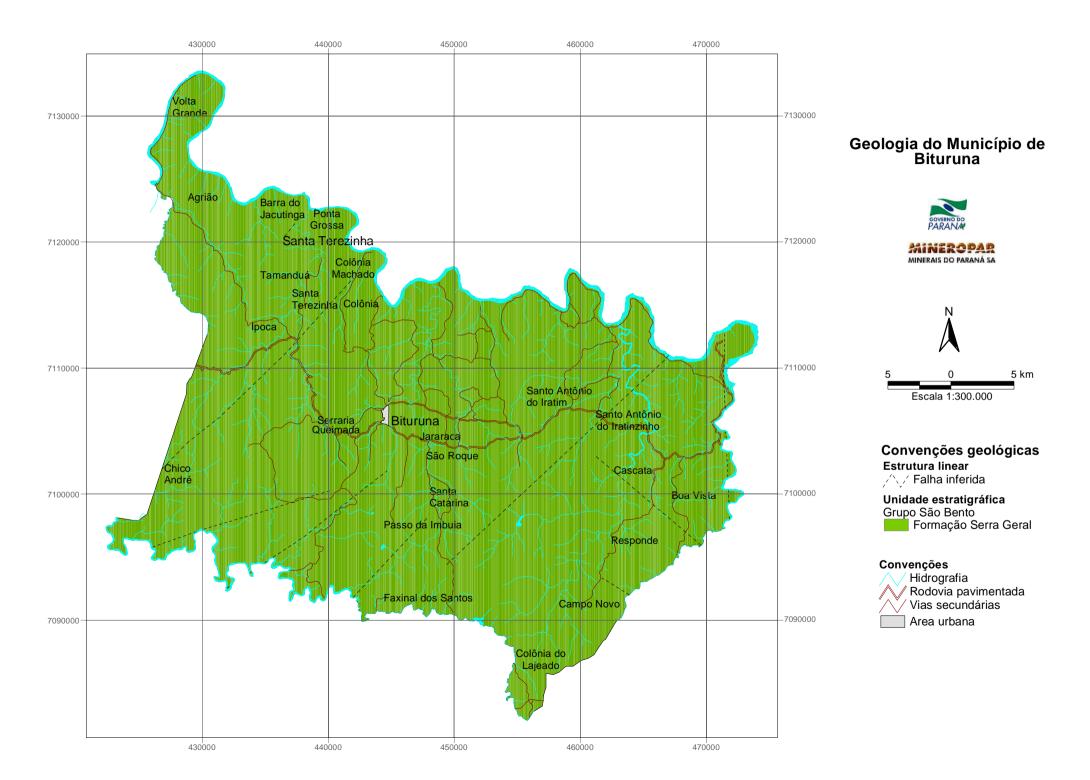
O ensino oferecido à população do município é exclusivamente público, com um total de 3.513 vagas, distribuídas entre 3.224 vagas no ciclo fundamental e 289 no ensino médio.

GEOLOGIA

O município de Bituruna situa-se sobre terrenos da Bacia do Paraná, de cujas unidades ocorrem dentro do seu território a Formação Serra Geral e aluviões recentes. Os mapas das páginas seguintes apresentam a geologia de Bituruna em duas escalas. O primeiro situa o território de Bituruna em relação às unidades estratigráficas do Paraná, isto é, as unidades classificadas de acordo com o critério de idade geológica, descritas nos itens a seguir. O segundo apresenta as mesmas unidades com detalhes estruturais e algumas unidades que não podem ser representadas na escala regional.

Formação Serra Geral


Esta formação é representada por um espesso pacote de lavas basálticas continentais, com variações químicas e texturais importantes, resultantes de um dos mais volumosos processos vulcânicos dos continentes. A Formação Serra Geral cobre mais de 1,2 milhão de km², correspondentes a 75% da extensão da Bacia do Paraná, com espessura de 350 m nas bordas a mais de 1.000 m no centro da bacia. Ocorrem variedades mais ricas em sílica, representadas por basaltos pórfiros, dacitos, riodacitos e riolitos, reunidos sob a denominação de Membro Nova Prata. A Formação Serra Geral aflora em todo o território do município e é responsável pela conformação topográfica em mesetas e platôs elevados do seu relevo.


Cada corrida de lava vulcânica, ou derrame, pode atingir 30 a 40 metros de espessura e compõem-se de três partes principais: base, zona central e topo. A base constitui a zona vítrea e vesicular, que se altera facilmente. A parte central é a mais espessa e formada por basalto maciço, porém recortado por numerosas juntas (ou fraturas) verticais a horizontais. A zona central é a mais espessa e maciça, porém recortada por juntas verticais, que formam um arranjo prismático que se assemelha a colunas de base hexagonais. O topo de um derrame típico apresenta os denominados *olhos de sapo*, resultantes da concentração dos gases abaixo da superfície da lava em resfriamento, formando bolhas que são posteriormente preenchidas (amígdalas) ou permanecem vazias (vesículas).

A combinação do denso fraturamento da zona central com as zonas vesiculares do topo dos derrames, pode gerar canais alimentadores de aqüíferos subterrâneos. Por isto, nas zonas em que o basalto aflora, é necessário impedir a descarga de efluentes químicos, industriais e domésticos para se evitar a contaminação das águas superficiais e subterrâneas.

Ao se alterarem, as rochas basálticas formam blocos de rocha, que vão se escamando em característica alteração esferoidal, comuns nas encostas do Terceiro Planalto. Muitas vezes a erosão e decomposição seletivas fazem ressaltar na topografia as unidades de derrames, formando verdadeiras escarpas, representadas por áreas com declividades acima de 20%, delimitadas por quebras de relevo, aproximadamente coincidentes com os contatos entre os derrames.

Bolsões de brechas de implosão, nos topos dos derrames, dentro ou abaixo das zonas vesiculares, ocorrem ocasionalmente. As brechas são formadas por fragmentos angulosos de basalto, centimétricos a decimétricos e caoticamente distribuídos em matriz basáltica altamente vítrea. São abundantes dentro delas cristalizações de calcita, quartzo, zeólitas, massas e películas de clorita, celadonita, clorofeíta e calcedônia.

Aluviões

O mapa geológico do município mostra ocorrências de aluviões recentes, mapeáveis na escala do levantamento, ao longo do rio Jararaca. Trata-se de um depósito com aproximadamente 2 km de extensão e largura variando de 300 a 500 m, constituído essencialmente por argilas vermelhas, cujas propriedades cerâmicas foram testadas e são comentadas a seguir.

RECURSOS MINERAIS

Em função da geologia do seu território, que se caracteriza pela monotonia geológica, Bituruna apresenta potencial para os seguintes tipos de substâncias minerais: argila para indústria cerâmica vermelha, saibro, basalto para blocos, brita e areia artificial. Por interessar de um modo geral à Prefeitura, são apresentadas complementarmente informações sobre os mananciais de água subterrânea da região.

Argila

Generalidades

As argilas são silicatos hidratados de alumínio, constituídos por partículas tipicamente lamelares cujos diâmetros são inferiores a 0,002 mm, de cores variadas em função dos óxidos associados. O principal componente das argilas industriais, ou misturadas, é a caulinita, um silicato de alumínio hidratado que nunca é encontrado em estado quimicamente puro na natureza e que apresenta uma proporção de 47% de sílica, 39% de alumina e 14% de água.

Os materiais argilosos ocorrem de três modos: residuais, transportados e latossolos. As argilas residuais ou primárias são aquelas que permanecem no local em que se formaram, devido a condições adequadas de intemperismo, topografia e natureza da rocha matriz. Estes depósitos são pouco lavrados no Paraná, por falta de tradição e pela identificação geralmente difícil, que exige pesquisa geológica especializada. O território de Bituruna apresenta este tipo de depósito, derivado das variedades mais ricas em sílica da Formação Serra Geral. Os depósitos de argilas transportadas formam-se nas várzeas, concentradas pela ação dos rios. Elas são muito mais utilizadas na produção de tijolos e telhas, pelas olarias localizadas ao longo das margens de rios, lagos ou várzeas.

No campo, as argilas são reconhecidas pela textura terrosa e a granulometria muito fina, que geralmente adquire, ao ser umedecido com uma quantidade limitada de água, certo grau de plasticidade, suficiente para ser moldado. Esta plasticidade é perdida temporariamente pela secagem e permanentemente pela queima. O valor da argila como matéria-prima de vários produtos cerâmicos baseia-se nesta propriedade. Em estado úmido, esta qualidade não é superada por quase nenhuma outra matéria-prima, emprestando-lhe dureza ao secar e rigidez ao ser queimada.

No estado seco, as argilas são friáveis, absorvem água com rapidez, têm fraca coesão e aderem na língua. Elas apresentam também um cheiro particular, análogo ao que se desprende da terra molhada depois de uma grande chuva. Pela adição de água, a argila se transforma numa massa plástica, podendo ser moldada em todas as formas, conservando-as permanentemente, mesmo após a secagem e queima.

As argilas mais plásticas são chamadas de *gordas*. As argilas arenosas e ásperas ao tato são chamadas de *magras*. As argilas para telhas e tijolos são gordas quando contém 80% de substâncias argilosas e magras quando contém 60% de areia. Os latossolos argilosos em diversos tons de vermelho, típicos da região, são utilizados por algumas cerâmicas como a *argila magra* ou *solo*. Eles não podem ser considerados tecnicamente uma argila, porque contêm outros minerais, principalmente óxidos e hidróxidos,

porém as vezes são indispensáveis para a formação de uma massa cerâmica de qualidade.

As argilas empregadas na fabricação de produtos de cerâmica vermelha ou estrutural, encontram-se distribuídas em quase todas as regiões. As impurezas que podem conter são muito variáveis e modificam, relativamente, as suas propriedades. Isto significa que para a fabricação destes produtos existe à disposição uma grande variedade de matérias-primas, o que representa, sem dúvida, uma vantagem para esta indústria.

Argilas de Bituruna

Bituruna dispõe de áreas com depósitos de argila para a produção de cerâmica vermelha, sendo abastecido por duas olarias locais. A equipe do Projeto **RIQUEZAS MINERAIS** coletou 4 amostras nos aluviões do rio Jararaca, que foram submetidas a ensaios cerâmicos preliminares no SELAB - Serviços de Laboratório da MINEROPAR. Os resultados são apresentados resumidamente abaixo e os laudos estão anexados ao final do presente relatório. As amostras identificadas com a letra A ao final do número correspondem a mistura da amostra original com 20% de latossolo, conforme indicam os laudos.

As observações a seguir têm caráter preliminar, devido ao pequeno número de amostras e ao caráter assistemático da sua coleta, compatível com os objetivos desta fase do Projeto. É digno de nota, mesmo considerando esta ressalva, que as características cerâmicas destas argilas e misturas as recomendam como matérias-primas de boa qualidade para a produção de cerâmica vermelha, isto é, tijolos, telhas e outras peças de uso estrutural na construção civil.

Tabela 1. Resultados dos testes de queima em amostras de Bituruna.

Amostra	Perda ao fogo %	Retr. Linear %	Mód. Ruptura kgf/cm²	Abs. de água %	Poros. apar. %
BT.01	11,85	4,33	97,67	23,47	35,73
BT.01-A	11,72	4,17	79,79	23,15	35,50
BT.02	12,20	4,17	76,61	24,11	37,32
BT.02-A	11,98	5,83	82,10	23,89	37,62
BT.03	11,61	5,17	83,78	23,48	36,97
BT.03-A	11,63	4,00	63,49	24,52	38,10
BT.04	8,58	1,33	88,43	22,12	34,32
BT.04-A	9,27	2,83	82,49	24,53	37,52

A perda ao fogo com valor máximo de 12,20% indica baixos teores de matéria orgânica e laterita, que são liberadas durante a queima. Esta propriedade é confirmada pela baixa retração linear, que tem um valor máximo de 5,83% neste lote, embora esta característica dependa de outros constituintes, tais como o ferro e o manganês. À exceção da primeira, todas as demais amostras simples e misturadas, à exceção da BT.03-A, acusam uma resistência mecânica moderadamente elevada, acima de 70 kgf/cm². Para esta temperatura de queima, o módulo de ruptura deve atingir pelo menos 55 kgf/cm² para tijolos vazados e 65 kgf/cm² para telhas. Completando este conjunto de propriedades favoráveis, a absorção de água e a porosidade mantêm-se dentro de limites aceitáveis, que são de 25% para tijolos e 20% para telhas.

Todas as amostras foram avaliadas, portanto, como adequadas ao uso em cerâmica estrutural, na produção de tijolos. Mais importante do que os valores individuais, entretanto, sem prejuízo do caráter preliminar dos dados, é a consistência dos resultados obtidos, com faixas estreitas de variação, indicando uma certa homogeneidade nos depósitos amostrados. Entretanto, somente uma pesquisa sistemática, com a coleta de amostras em malha regular, poderá confirmar se estes dados levarão a reservas economicamente aproveitáveis ou se confirmarão um bom potencial, porém subeconômico.

Pedras britadas, de talhe e cantaria

A Prefeitura de Bituruna utiliza em larga escala o calçamento poliédrico, na área urbana. A MINEROPAR dispõe de um manual de orientação ao uso de paralelepípedos e pedras irregulares na pavimentação urbana e rural, que poderá ser utilizado pela Prefeitura como guia para aperfeiçoar tecnicamente a execução destas obras². Comparado aos pavimentos asfálticos, o calçamento poliédrico apresenta duas vantagens importantes:

- Geração de emprego e renda durante a execução dos projetos, desde a fase de extração até a implantação e reposição dos pavimentos e calçadas.
- Redução dos custos de pavimentação urbana e rural, em relação ao uso de pavimento asfáltico.

Em relação às vias não-pavimentadas, entretanto, o calçamento poliédrico apresenta uma série mais diversificada de benefícios:

- Barateamento no custo dos transportes, com a conseqüente redução do custo de vida, em relação às vias não pavimentadas.
- Aumento da capacidade de transporte das vias públicas.
- Acesso fácil e garantido às propriedades públicas e particulares.
- Valorização dos imóveis atendidos pelas vias pavimentadas e calçadas.
- Melhoria das condições de habitabilidade das regiões atendidas.
- Aumento da arrecadação municipal pela valorização dos imóveis e aumento da produtividade.
- Atendimento das justas necessidades da comunidade.

Durante os trabalhos de campo, junto a uma pedreira desativada na localidade de Linha Palma, na Colônia Bracatinga, foram identificados afloramentos de basalto fraturado, em forma de placas com espessuras variáveis, ideais para a pavimentação de passeios, pátios e outras áreas de circulação urbana.

Areia

_

Situado a 50 km de União da Vitória, o município de Bituruna não enfrenta problemas com a obtenção de areia para a construção civil. Segundo informações dos proprietários da pedreira Gressele, o pó de brita já é utilizado para esta finalidade, entrando na composição de concreto e argamassa.

² MINEROPAR - Paralelepípedos e alvenaria poliédrica: manual de utilização. Curitiba, Gerência de Fomento e Economia Mineral. 1983.

A areia artificial de basalto pode substituir a areia natural, na construção civil, desde que seja garantido, por meio de moagem ou britagem mais fina, que a curva granulométrica se mantenha dentro das normas da indústria. A amostra coletada para ensaio granulométrico deve ter o volume mínimo de 10 litros, homogeneizada e disposta em cone de grande diâmetro na base e pequena altura. Este cone é aplainado no topo e dividido em quatro quadrantes, dos quais dois opostos são descartados e os demais retidos para repetição do processo de quarteamento até se obter o volume necessário para a execução do ensaio.

A distribuição que se recomenda genericamente é a seguinte: 40% de areia fina, 20% de areia média e 40% de areia grossa. Segundo a norma da Associação Brasileira de Normas Técnicas - ABNT, NBR-7211/83, a curva granulométrica da areia para construção civil, tanto natural quanto artificial, deve ficar dentro dos seguintes limites:

Tabela 2. Distribuição granulométrica da areia artificial, segundo a NBR-7211/83.

Tabola El Biotribulção grandometroa da arola artificial, coguntas a 11811 721 1700.									
GRANULOMETRIA (mm)	9,52	6,35	4,76	2,38	1,19	0,60	0,30	0,15	
PERCENTAGEM ACUMULADA	0	0-7	0-11	0-25	10-45	41-65	70-92	90-100	

Além da granulometria e da composição mineral, a forma das partículas apresenta importância especial para a adequabilidade da areia artificial ao uso em agregados. As partículas devem ser mais equidimensionais (cúbicas, piramidais ou formas semelhantes) do que lamelares, de modo a facilitar o empacotamento e aumentar a resistência mecânica do produto final. A areia derivada de basalto tende a preencher estes requisitos com facilidade, apresentando ainda a vantagem, sobre a areia natural, de ser mais angulosa e áspera, o que facilita a coesão entre os grãos e destes com o cimento ou asfalto.

Saibro

Devido à grande extensão das zonas de solos litólicos e afloramentos de basalto alterado, o município de Bituruna apresenta vários locais para a extração de saibro, existindo saibreiras na maior parte dos distritos. Trata-se, portanto, de uma matéria-prima que não representa um problema para as obras do município. Na porção nordeste do município, junto à localidade de São Vicente, é mais difícil de se encontrar este tipo de material, pois o basalto está alterado mais profundamente, com matacões de rocha fresca entremeados.

Água superficial

A água distribuída na cidade de Bituruna é coletada e tratada pela Sanepar. A captação dá-se no rio Lageado do Erval e trata-se em média 65.000 litros/hora. Junto à barragem onde se processa a coleta, localiza-se o bairro Bela Vista, onde funciona uma serraria. Tanto a ocupação humana quanto a atividade da serraria poderão comprometer futuramente a qualidade da água, pois o sistema de esgoto utiliza fossa séptica e poço morto. Este problema poderá ser evitado se a coleta da água para abastecimento passar a ser feita a montante deste bairro.

Água subterrânea

A água é o recurso mineral mais utilizado e, por isto mesmo, o mais ameaçado de exaustão no Brasil e no mundo inteiro. Apesar de três quartos da superfície terrestre serem cobertos por água, somente 1% presta-se ao consumo humano e grande parte desta pequena fração está congelada nos pólos e nas grandes altitudes das cadeias montanhosas. O mau uso (exemplo: lavar calçadas e automóveis com água tratada), o desperdício (exemplo: perdas médias de 40% nas redes de distribuição dos municípios brasileiros) e a falta de medidas protetoras dos mananciais (exemplo: contaminação de mananciais pela instalação de lixões e vilas residenciais em locais impróprios) estão levando ao esgotamento não apenas das reservas superficiais, mas também das subterrâneas.

Embora a equipe da MINEROPAR não tenha efetuado vistorias de campo voltadas ao levantamento de informações sobre o potencial do município em relação aos mananciais de água subterrânea, apresentamos a seguir dados disponíveis na Empresa, que podem orientar as autoridades municipais quanto ao seu aproveitamento futuro. Na verdade, este não é o tipo de avaliação que se possa fazer sem a perfuração de poços e a execução de testes de vazão, entre outros recursos de pesquisa.

As informações que apresentamos a seguir baseiam-se principalmente na obra do Dr. Reinhard Maack³, pioneiro dos estudos hidrogeológicos no Paraná.

O abastecimento de água, principalmente dos centros urbanos, assume a cada dia aspectos de problema premente e de solução cada vez mais difícil, devido à concentração acelerada das populações nas regiões metropolitanas, à demanda que cresce acima da capacidade de expansão da infra-estrutura de abastecimento e à conseqüente ocupação das zonas de recarga dos mananciais. Estes três fatores, que se destacam dentro de um grande elenco de causas, geram de imediato a necessidade de se buscar fontes cada vez mais distantes dos pontos de abastecimento, o que encarece os investimentos necessários e os preços finais do consumo.

A origem da água subterrânea é sempre superficial, por precipitação das chuvas, concentração nas bacias de drenagem e infiltração nas zonas de recarga dos aqüíferos. Apenas uma fração menor da água infiltrada no subsolo retorna diretamente à superfície, sem penetrar nas rochas e se incorporar às reservas do que se denomina propriamente água subterrânea.

Lençol ou nível freático é a superfície superior da zona do solo e das rochas que está saturada pela água subterrânea. A água que está acima do lençol freático é de infiltração, que ainda se movimenta pela força da gravidade em direção à zona de saturação. Este movimento de infiltração, também dito percolação, pode ser vertical ou subhorizontal, dependendendo da superfície do terreno, da estrutura e das variações de permeabilidade dos materiais percolados.

Quando captada em grande profundidade ou quando aflora em fontes naturais, por ascensão a partir das zonas profundas do subsolo, a água subterrânea atinge temperaturas que chegam a 40°C ou mais, dissolve sais das rochas encaixantes e adquire conteúdos de sais que a tornam merecedora de uma classificação especial. Ela se torna

_

³ MAACK, R. - Notas preliminares sobre as águas do sub-solo da Bacia Paraná-Uruguai. Curitiba, Comissão Interestadual da Bacia Paraná-Uruguai, 1970.

uma água mineral, cuja classificação varia essencialmente em função da temperatura de afloramento, do pH⁴ e dos conteúdos salinos.

As rochas sedimentares de grão fino, como os siltitos e folhelhos são altamente porosas, de modo que podem armazenar grandes volumes de água, mas a pouca ou nenhuma comunicação entre os poros resulta em baixa permeabilidade. Desta forma, por mais água que possam conter, muitas vezes armazenada durante o processo de deposição, não há como liberá-la e assim estes materiais tornam-se aqüíferos de péssima qualidade. Os solos que as recobrem podem mostrar-se encharcados e sugerir grandes volumes de água no subsolo, mas acontece justamente o contrário, porque a água concentra-se na superfície do terreno justamente porque não consegue se infiltrar.

Os melhores aqüíferos são as rochas sedimentares de grão médio a grosseiro, como os arenitos e conglomerados, de altas porosidade e permeabilidade, que as permitem armazenar grandes volumes de água e liberar grandes vazões. Ao contrário das rochas argilosas, os seus terrenos são geralmente secos, devido à facilidade de infiltração, mas em profundidade elas contêm excelentes reservas. É por isto que o arenito denominado Botucatu, que aflora imediatamente abaixo do basalto, ao longo das encostas inferiores do Terceiro Planalto, é o maior aqüífero da América do Sul, com o nome de Aqüífero Guarani.

Rosa Filho e colaboradores (1987) analisaram 222 poços tubulares, perfurados no Terceiro Planalto Paranaense, estudando dados de vazão, profundidade de entrada d'água e direções preferenciais dos lineamentos estruturais sobre os quais se situam os poços. Os resultados permitiram aos autores estabelecer, com base em parâmetros estatísticos, um zoneamento hidrogeológico para a região, ajustado às seguintes bacias hidrográficas: Zona A – rio Iguaçu; Zona B – rio Piquiri; Zona C – rio Paraná; Zona D – rio Ivaí; Zona E – rios Pirapó e Paranapanema; Zona F – rios Tibagi e Cinzas.

Para melhor entender o comportamento da água subterrânea, é preciso conhecer a estrutura típica dos derrames⁵ de basalto, que condiciona a migração e o armazenamento da água no subsolo da região. A base de cada derrame constitui a zona vítrea e vesicular, que se altera facilmente e forma freqüentemente uma camada argilosa de poucos metros de espessura. A zona central é a mais espessa e formada por basalto maciço, mas recortado por numerosas juntas (ou fraturas) verticais e horizontais. As juntas verticais são geralmente espaçadas e se entrecruzam em ângulos em torno de 120°, formando colunas de seção hexagonal, enquanto as horizontais são mais cerradas, formando lajes com poucos centímetros de espessura. O topo de um derrame típico é vesicular (poroso) e amigdalóide (amígdalas são vesículas preenchidas), atingindo espessuras de poucos metros. Um derrame de rocha basáltica pode atingir 30 a 40 metros de espessura e existe uma seqüência de mais de 30 derrames, na região Oeste do Terceiro Planalto, totalizando cerca de 1.500 metros de espessura.

O potencial aquífero dos basaltos depende da densidade de fraturas e vesículas, atingindo o valor máximo onde ambas as feições se associam a fraturas regionais, no mesmo local, podendo as vazões chegar à ordem de 200 m³/h. Entretanto, a compressão das rochas faz com que as fraturas se fechem à medida que a profundidade aumenta, de modo que abaixo dos 90 metros as reservas de água diminuam drasticamente, dentro dos derrames. A tabela a seguir apresenta os dados de vazão obtidos nos po-

-

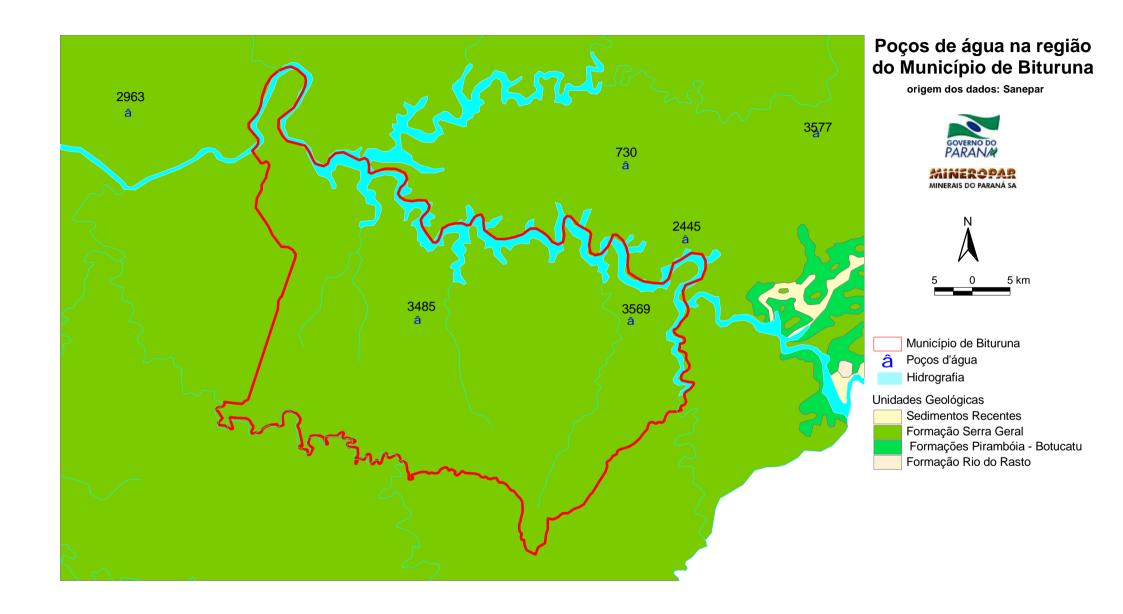
⁴ pH: índice que mede o grau de acidez ou alcalinidade dos líquidos. Os valores de 0 a 6 indicam pH ácido, o valor 7 é neutro e

os valores de 8 a 14 são alcalinos.

⁵ Derrame: corrida de lava vulcânica, como a que formou a rocha basáltica no Terceiro Planalto Paranaense.

ços estudados pelos autores na Zona A - Rio Iguaçu, onde se situa o município de Bituruna.

Tabela 3. Distribuição percentual das vazões dos poços na Zona A - Rio Iguaçu,


segundo Rosa Filho e colaboradores (1987).

J	VARIAÇÃO DAS VAZÕES - DISTRIBUIÇÃO PERCENTUAL										
VAZÕES m³/h	< 1	1 - 5	5 - 10	10 -15	15 - 20	20 - 25	> 25				
% SIMPLES	39,47	36,84	15,78	2,63	2,63	2,63	-				
% ACUMU- LADAS	39,47	76,31	92,09	94,72	97,35	99,98	-				

Com 38 poços analisados, esta zona apresenta o menor potencial hidrogeológico do Terceiro Planalto Paranaense, possivelmente devido ao relevo acentuado, responsável pelas grandes profundidades de entrada d'água, cuja média situa-se em torno dos 80 m e máxima em torno de 170 m. Acima desta profundidade, são comuns as vazões da ordem de 10 m³/h, mas abaixo dos 90 m são raras as de 5 m³/h, sendo mais comuns as situadas no intervalo de 1 a 2 m³/h. Esta é uma produção muito inferior à do Terceiro Planalto como um todo, cujas estatísticas mostram que apenas 16% dos poços têm vazões inferiores a 1 m³/h. Os dados da tabela acima indicam que 3 em cada 4 poços perfurados (correspondentes a 76,31%) produzem menos de 5 m³/h e que são raras as vazões superiores a 25 m³/h.

O mapa da página seguinte apresenta a localização dos poços tubulares de água, cadastrados em Bituruna e nos municípios vizinhos, cujos dados indicam os valores esperados de produtividade em poços que venham a ser perfurados. Na região, a maior vazão registrada não passa de 27 m³/h e três negativos, confirmando a baixa produtividade que caracteriza esta zona hidrogeológica.

As medidas mais importantes para a proteção dos aqüíferos, segundo R. Maack, consistem na proteção e reflorestamento das matas ciliares e de cabeceiras de drenagem, porque elas protegem, por sua vez, as zonas de recarga. Outras medidas que podem ser tomadas são a captação de água da chuva em canais de irrigação e a construção de açudes, para condução até as zonas de recarga, sobre sedimentos (principalmente aluviões) e rochas permeáveis. Os canais são construídos de forma a concentrarem por gravidade a água nos locais escolhidos, enquanto os açudes geralmente exigem o uso de bombas de grande capacidade. Considerando a baixa produtividade dos aqüíferos da região, a principal preocupação das autoridades municipais deve ser com a preservação dos mananciais de superfície, cujas medidas são as mesmas mencionadas acima.

Poços de Água na região do Município de Bituruna

Código	Bacia hidrográfica	Município	Localidade	Proprietário	Prof.(m)	Formação Geológica	Tipo de aqüífero	Vaz.Expl.m³/h
3485	Iguaçu	Bituruna	Sede Municipal	Sanepar	133	Serra Geral	Fraturado	0
730	Iguaçu	Cruz Machado	Sede Municipal	Sanepar	248	Serra Geral	Fraturado	27
2445	Iguaçu	Cruz Machado	Nova Concórdia	Sanepar	71	Serra Geral	Fraturado	
2963	Iguaçu	Cruz Machado	Vila Taguá	Sanepar	72	Serra Geral	Fraturado	5
3569	Iguaçu	Porto Vitória	Sede Municipal	Sanepar	120	Paleozóico	Poroso	22
3577	Ivaí	Prudentópolis	Baixo Barra Grande	Pref.Municipal	100	Estrada Nova	Poroso	1

Origem dos dados: Sanepar

Água mineral

Conforme definição do Código de Águas Minerais do Brasil (decreto-lei 7.841, de 08/08/45), em seu artigo 1º, águas minerais naturais "são aquelas provenientes de fontes naturais ou de fontes artificialmente captadas que possuam composição química ou propriedades físicas ou físico-químicas distintas das águas comuns, com características que lhes confiram uma ação medicamentosa". Ainda de acordo com esse código (art. 35°), as águas minerais naturais brasileiras são classificadas mediante dois critérios: suas características permanentes e as características inerentes às fontes. As tabelas 4 e 5 apresentam as classificações feitas de acordo com os elementos predominantes e conteúdos em gases, que interessam à avaliação da fonte amostrada em Bituruna.

Genericamente, toda água mineral natural traz benefícios à saúde e à beleza. Além de repor energias e favorecer o funcionamento adequado de músculos e nervos, tem efeitos benéficos especialmente para a pele, por hidratar e eliminar as toxinas resultantes da queima das células. Em função disso, há dermatologistas que indicam água mineral natural também para a higiene do rosto e do corpo, assim como para minimizar os efeitos de manchas e queimaduras provocadas pelo sol. A Tabela 6 indica os efeitos terapêuticos mais conhecidos das águas minerais brasileiras.

No Brasil, onde cerca de 250 marcas estão presentes no mercado, a maior produção e o maior consumo são de águas minerais naturais leves e macias, classificadas na fonte como radioativas, fracamente radioativas e hipotermais, assim como as águas classificadas quimicamente como fluoretadas, carbogasosas e oligominerais, estas com vários sais em baixa concentração. Mas há diversas outras classificações, indicadas para diferentes finalidades, como demonstra a tabela a seguir, cujo texto foi revisado pelo Dr. Benedictus Mário Mourão, médico, diretor dos Serviços Termais da Prefeitura de Poços de Caldas e titular da Comissão Permanente de Crenologia do DNPM.

No extremo noroeste do município de Bituruna, junto ao lago da represa de Salto Segredo, existe uma fonte de água sulfurosa, que foi amostrada para análise química e bacteriológica, a pedido da Prefeitura. Esta água é bastante consumida pelos turistas que visitam a fonte e se hospedam no local. Uma amostra foi coletada para análise físico-quimica e bacteriológica no Laboratório de Pesquisas Hidrogeológicas da Universidade Federal do Paraná, cujos laudos são apresentados em anexo.

A amostra coletada em Bituruna apresenta uma composição típica de água mineral natural alcalino-bicarbonatada fluoretada. Chamam atenção os altos teores de cloreto e sódio, muito acima dos teores normalmente obtidos nas águas minerais coletadas pela MINEROPAR no Terceiro Planalto Paranaense. Esses teores podem resultar da presença de calcita e minerais argilosos nas zonas vesiculares, brechas e fraturas do basalto, abundantes na região. O seu caráter sulfuroso, embora evidente na fonte e confirmado pelo geólogo durante a coleta, não pode ser detectado na análise de laboratório porque a amostra precisa ser analisada no máximo 6 horas depois da coleta e o vasilhame precisa ser hermeticamente fechado para evitar a fuga do gás sulfídrico. Como estas condições não foram preenchidas nesta amostragem, este aspecto não foi analisado. Por outro lado, o laudo bacteriológico confirma a potabilidade e boa qualidade da água para consumo.

Tabela 4. Classificação das águas minerais pelo DNPM, de acordo com o elemento dominante.

TIPOS	CARACTERÍSTICAS
I. Oligominerais	Contêm diversos tipos de sais, todos em baixa concentração.
II. Radíferas	Contêm substâncias radioativas dissolvidas que lhes atribuam radioatividade permanente.
III. Alcalino-bicarbonatadas	Contêm teores de compostos alcalinos equivalentes pelo menos a 0,200 g/l de NaHCO ₃ .
IV. Alcalino-terrosas	Contêm teores de alcalinos terrosos equivalentes a pelo menos 0,120 g/l de CaCO ₃ , podendo ser:
	a) Alcalino-terrosas cálcicas, que contêm pelo menos 0,048 g/l de Ca, na forma de CaHCO ₃ .
	b) Alcalino-terrosas magnesianas, que contêm pelo menos 0,030 g/l de Mg, na forma de MgH-
	CO ₃ .
V. Sulfatadas	Contêm pelo menos 0,100 g/l do ânion SO4, combinado aos cátions Na, K e Mg
VI. Sulfurosas	Contêm pelo menos 0,001 g/l do ânion S.
VII. Nitratadas	Contêm pelo menos 0,100 g/l de ânion NO3 de origem mineral.
VIII. Cloretadas	Contêm pelo menos 0,500 g/l de NaCl.
IX. Ferruginosas	Contêm pelo menos 0,005 g/l de cátion Fe.
X. Radioativas	Contêm radônio em dissolução, nos seguintes limites:
	 a) Fracamente radioativas, as que apresentarem, no mínimo, um teor em radônio compreendi- do entre 5 e 10 unidades Mache, por litro, a 20°C e 760 mm de Hg de pressão.
	b) Radioativas, as que apresentarem um teor em radônio compreendido entre 10 e 50 unidades
	Mache por litro, a 20°C e 760 mm de Hg de pressão.
	c) Fortemente radioativas, as que possuírem um teor em radônio superior a 50 unidades Ma-
	che, por litro, a 20°C e 760 mm de Hg de pressão.
XI. Toriativas	Contêm um teor em torônio em dissolução equivalente em unidades eletrostáticas, a 2 unidades
	Mache por litro, no mínimo.
XII. Carbogasosas	Contêm 200 ml/l de gás carbônico livre dissolvido, a 20°C e 760 mm de Hg de pressão.
	(Fonte: Associação Brasileira da Indústria de Águas Minerais – ABINAM)

Tabela 5. Classificação das águas minerais segundo os conteúdos de gases.

TIPOS	CARACTERÍSTICAS
I. Fontes radioativas	 a) Fracamente radioativas, as que apresentarem, no mínimo, uma vazão gasosa de 1 litro por mi- nuto com um teor em radônio compreendido entre 5 e 10 unidades Mache, por litro de gás espon- tâneo, a 20°C e 760 mm de Hg de pressão;
	 b) Radioativas, as que apresentarem, no mínimo, uma vazão gasosa de 1 litro por minuto, com um teor compreendido entre 10 e 50 unidades Mache, por litro de gás espontâneo, a 20°C e 760 mm de Hg de pressão;
	c) Fortemente radioativas, as que apresentarem, no mínimo, uma vazão gasosa de 1 litro por minuto, com teor em radônio superior a 50 unidades Mache, por litro de gás espontâneo, a 20°C e 760 mm de Hg de pressão.
II. Fontes toriativas	as que apresentarem, no mínimo, uma vazão gasosa de 1 litro por minuto, com um teor em torônio, na emergência, equivalente em unidades eletroestáticas a 2 unidades Mache por litro.
III. Fontes sulfurosas	as que possuírem na emergência desprendimento definido de gás sulfídrico.

(Fonte: Associação Brasileira da Indústria de Águas Minerais – ABINAM)

Tabela 6. Efeitos terapêuticos das águas minerais naturais.

CLASSIFICAÇÃO	INDICAÇÕES
Ferruginosas	Anemias, parasitoses, alergias e acne juvenil; estimulam o apetite.
Fluoretadas	Para a saúde de dentes e ossos.
Radioativas	Dissolvem cálculos renais e bilares; favorecem a digestão; são calmantes e laxantes; fil- tram excesso de gordura do sangue.
Carbogasosas	Diuréticas e digestivas, são ideais para acompanhar refeições; repõe energia e estimula o apetite; eficazes contra hipertensão arterial.
Sulfurosas	Para reumatismos, doenças da pele, artrites e inflamações em geral.
Brometadas	Sedativas e tranquilizantes, combatem a insonia, nervosismo, desequilíbrios emocionais, epilepsia e histeria.
Sulfatadas sódicas	Para prisão de ventre, colites e problemas hepáticos.
Cálcicas	Para casos de raquitismo e colite; consolidam fraturas e têm ação diurética. Reduz a sensibilidade em casos de asma, bronquites, eczemas e dermatoses.
Iodetadas	Tratam adenóides, inflamações da faringe e insuficiência da tireóide.
Bicarbonatadas sódicas	Doenças estomacais, como gastrites e úlceras gastroduodenais, hepatite e diabetes.
Alcalinas	Diminuem a acidez estomacal e são boas hidratantes para a pele.
Ácidas	Regularizam o pH da pele.
Carbônicas	Hidratam a pele e reduzem o apetite.
Sulfatadas	Atuam como antiinflamatório e antitóxico.
Oligominerais radioativas	Higienizam a pele, diurese, intoxicações hepáticas, ácido úrico, inflamações das vias uri- nárias, alergias e estafa.
·	(Fonte: Associação Brasileira da Indústria de Águas Minerais — ARINAM)

(Fonte: Associação Brasileira da Indústria de Águas Minerais – ABINAM)

PRODUÇÃO MINERAL

O município de Bituruna conta atualmente com uma empresa de extração de basalto com produção de pó de pedra, pedrisco, brita e blocos de cantaria, Grezelle e Grezelle Ltda., e duas olarias, Cerâmica Lody Giacomini Ltda. e Cerâmica 91 Ltda. Por seu interesse especial, as olarias são descritas a seguir.

A título de comparação com a indústria instalada na região, apresentamos na página seguinte informações disponíveis sobre a produção de alguns municípios vizinhos. Esta informação confirma a avaliação do potencial mineral feita acima e justifica a recomendação à Prefeitura de considerar a possibilidade de gerar pequenos negócios na indústria de extração e beneficiamento mineral.

Olarias

No município de Bituruna, existem apenas duas olarias em atividade. A Cerâmica Lody Giacomini Ltda. está falida, apenas com os funcionários operando para receber as dívidas trabalhistas em produtos. Tendo produzido a média de 60.000 tijolos/mês, utiliza como matéria-prima a alteração de rocha ácida, de cor cinza-claro e bastante plástica, misturada a solo orgânico de cor castanha, extraídos de terrenos próprios da olaria.

O estabelecimento possui dois fornos do tipo abóbada e a queima é feita com serragem e refugos de madeireira, abundantes na região. O proprietário pretende modernizar o equipamento e encontrar algumas misturas que melhorem a qualidade do tijolo produzido, pois a sua produção atual não está boa.

A segunda olaria é a Cerâmica 91 Ltda., que também se encontra com as atividades reduzidas e o proprietário informa que poderá fechá-la. Embora os equipamentos de produção sejam mais novos, o caminhão e a retroescavadeira encontram-se sucateados. A matéria-prima utilizada também é alteração de rocha ácida, de cor cinza-arroxeada, bastante plástica, que é misturada ao mesmo tipo de solo orgânico da primeira olaria. A produção média atual é de 60.000 peças/mês. A queima é abastecida por injeção de serragem e refugos de madeireira.

Nenhuma das olarias tem a sua lavra regularizada junto ao DNPM e ao Instituto Ambiental do Paraná - IAP.

Durante os trabalhos de campo, foram executados 4 furos a trado, em aluviões do rio Jararaca, que apresentaram uma argila de cor cinza a castanho, proveniente do transporte de material proveniente da alteração de rochas ácidas, que afloram ao longo da drenagem. Os furos atingiram em média 2,5 m de profundidade. Em local próximo, foi coletada uma amostra de solo, de cor vermelho-intenso, para se efetuar as misturas com as argilas, tendo em vista processar os ensaios físicos em materiais misturados. Os seus resultados são apresentados e comentados no capítulo referente aos Recursos Minerais.

Produção Mineral da região do Município de Bituruna - 1995/1999

Município/ Substância	Soma	Unidade	1995	1996	1997	1998	1999
BITURUNA							
argila	44.970	t	44.450	365	155		
PORTO VITÓRIA							
areia	269.380	m³	61.763	57.752	57.180	46.986	45.699
argila	2.470	t	2.470				
UNIÃO DA VITÓRIA							
areia	1.279.689	m³	224.216	201.291	202.854	312.102	339.226

Origem dos dados - IAPSM - Informativo Anual sobre a Produção Mineral no Paraná - Mineropar

Empresas de Mineração na região do Município de Bituruna 1995/1999

Município	Substância	Empresa
BITURUNA	ARGILA	Ceramica 91 Ltda
PORTO VITÓRIA	AREIA	Areial do Vale Ltda
		Ernani Camilo Scheid
	ARGILA	Olaria Sao Nicolau Ltda
UNIÃO DA VITÓRIA	AREIA	G R Extração de Areia e Transportes Rodoviarios Ltda
		Tonial Extração e Com de Areia e Transp de Cargas Ltda
		Extração e Comercio de Areia Cristal Ltda
		Arlete Benghi de Melo
		Catia Benghi

Origem dos dados: IAPSM Mineropar

DIREITOS MINERÁRIOS

Bituruna apresenta somente um título minerário concedido pelo Departamento Nacional da Produção Mineral - DNPM, ao contrário do município vizinho de União da Vitória, que apresenta vários títulos no regime de licenciamento, concedidos para a exploração de areia. Estes licenciamentos situam-se sobre as formações geológicas denominadas Pirambóia e Botucatu, que não afloram no município de Bituruna. O mapa e a tabela das páginas seguintes apresentam a localização e dados destes títulos minerários.

Como conceder licença para extração de bem mineral

Apresentamos a seguir orientações gerais sobre o processo de concessão de licença para exploração mineral, de interesse da Prefeitura Municipal. Para maiores informações, uma consulta à legislação mineral integral pode ser feita nas páginas da MINE-ROPAR (www.pr.gov.br/mineropar) e do DNPM (www.dnpm.gov.br), na Internet. O processo de concessão da licença pela Prefeitura Municipal envolve poucos procedimentos, regulamentados pela Lei Nº 6.567 de 24 de setembro de 1978 e Instrução Normativa do DNPM Nº 001, de 21 de fevereiro de 2.001. Apresentamos a seguir, com comentários de esclarecimento, as fases do processo de licenciamento que interessam à Prefeitura Municipal e os procedimentos necessários à regularização da atividade mineral.

Bens minerais enquadrados no regime de licenciamento

Podem ser aproveitados pelo regime de licenciamento, ou de autorização e concessão, os seguintes bens minerais, limitados à área máxima de 50 (cinqüenta) hectares:

- Areias, cascalhos e saibros para utilização imediata na construção civil, no preparo de agregados e argamassas, desde que não sejam submetidos a processo industrial de beneficiamento, nem se destinem como matéria-prima à indústria de transformação.
- Rochas e outras substâncias minerais, quando aparelhadas para paralelepípedos, guias, sarjetas, moirões e afins.
- Argilas usadas no fabrico de cerâmica vermelha.
- Rochas, quando britadas para o uso imediato na construção civil e os calcários empregados como corretivos de solo na agricultura.

Requerimento da licença

O aproveitamento mineral por licenciamento é facultado exclusivamente ao proprietário do solo ou a quem dele tiver expressa autorização, salvo se a jazida situar-se em imóveis pertencentes a pessoa jurídica de direito público. A Licença Municipal deverá ser emitida exclusivamente ao proprietário do solo, ou a quem dele tiver expressa autorização, estando habilitado ao recebimento de tal licença tanto as pessoas físicas como as jurídicas, porém a exploração é autorizada exclusivamente a pessoa jurídica. Caso o título minerário seja cancelado por parte do DNPM, por não cumprimento pelo titular das obrigações previstas em lei, é vedado ao proprietário do solo ou ao titular cujo registro haja sido cancelado, uma nova habilitação para o aproveitamento da jazida pelo mesmo regime.

Títulos Minerários na região do Município de Bituruna

Município	Localização	Substância	Titulos Willierarios na regiao do	Diploma			Ároo(ha)	Último evento
•	Linha Rosario	basalto	Titular R Grezelle e Grezelle Ltda	Біріопіа	Número 826922		Area(ha)	
Bituruna				linamaiamanta				licen/exigencia publicada
Porto Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826025			licen/relatorio anual lavra
Porto Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826218			licen/relatorio anual lavra
Porto Vitória	Leito do Rio Iguacu	areia	Mineracao Faraday Ltda		826155			licen/cumprimento exigencia
União da Vitória	Jacu	areia	Irmaos Hobi Ltda	licenciamento	852925			licen/relatorio anual lavra
União da Vitória	Jacu	areia	Irmaos Hobi Ltda	licenciamento	852926		-, -	licen/relatorio anual lavra
União da Vitória	Leito R. Iguacu- U.Vitoria	areia	Tonial-Extr.Com.de Areia e Trans.de Cargas Ltda	licenciamento	820533			licen/renovacao licenca
União da Vitória	Vila Zulmira	areia	Walduyr Geremia - F.I	licenciamento	820642			licen/licenciamento autorizado
União da Vitória	Colonia Correntes	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	820912			licen/exigencia publicada
União da Vitória	Leito do Rio Iguacu	areia	Irmaos Hobi Ltda	licenciamento	820642			licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	Irmaos Hobi Ltda	licenciamento	820130		40,30	licen/pedido renovacao licenca
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826175	1988	14,85	licen/documento diverso protocolizado
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda		826177	1988	18,20	licen/pedido renovacao licenca
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826178	1988	17,31	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826179	1988	18,36	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda		826180	1988	22,46	licen/pedido renovacao licenca
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826181	1988	24,60	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826182	1988	23,16	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826183	1988	18,24	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826184	1988	25,96	licen/relatorio anual lavra
União da Vitória	Col. Coronel Amazonas	areia	Irmaos Hobi Ltda	licenciamento	826290	1988	2,67	licen/exigencia publicada
União da Vitória	Sitio da Procedina	areia	Irmaos Hobi Ltda	licenciamento	826291	1988	14,50	licen/renovacao licenca autorizada
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda		826255	1989		licen/documento diverso
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda		826256	1989	9,85	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	Irmaos Hobi Ltda	licenciamento	826282	1989	38,25	licen/relatorio anual lavra
União da Vitória	Banco do Imovel	areia	Gr Extr Areia e Transp Rodoviarios Ltda	licenciamento	826312	1989	49,60	licen/relatorio anual lavra
União da Vitória	Rio da Areia	areia	Irmaos Hobi Ltda	licenciamento	826343	1989	17,83	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	Gr Extr Areia e Transp Rodoviarios Ltda	licenciamento	826029	1992	29,33	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826155	1992	18.20	licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826170			licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826171	1992	14.84	licen/renovacao licenca autorizada
União da Vitória	Col Cel Amazonas	areia ind.	Irmaos Hobi Ltda	alv. pesquisa	826301	1992	,-	conc lav/recurso protocolizado
União da Vitória	Sem Denominação	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826217			licen/documento diverso protocolizado
União da Vitória	Colonia Correntes	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826803			licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	G.R. Extr. de Areia e Trans. Rod. Ltda	licenciamento	826090	1995	,	licen/relatorio anual lavra
União da Vitória	Rio da Prata	areia	Areial do Vale Ltda	licenciamento	826267	1995		licen/relatorio anual lavra
União da Vitória	Rio da Prata	areia	Areial do Vale Ltda	licenciamento	826268			licen/relatorio anual lavra
União da Vitória	Leito do Rio Iguacu	areia	Extracao C Areia Cristal Ltda	ilocitolatticitio	827051	1996		licen/cumprimento exigencia
União da Vitória	Leito do Rio Iguacu	areia	Extracao C Areia Cristal Ltda		826418			licen/documento diverso protocolizado
Uniao da Vilona	Leilo do Nio iguacu	aitia	LAHAGAU O AIGIA CIISIAI LIUA		020418	1990	20,42	ilicentaccumento diverso protocolizado

Origem dos dados: DNPM - Departamento Nacional da Produção Mineral abril/2001

Concessão da licença

O licenciamento depende da obtenção, pelo interessado, de licença específica, expedida pela autoridade administrativa local, no município de localização da jazida, e da efetivação do competente registro no DNPM, mediante requerimento.

A Licença Municipal deve ser expedida por um prazo determinado, não especificando a regulamentação da lei qual seria este prazo. Assim, a Prefeitura Municipal poderá emitir tal licença com prazo de validade que melhor lhe convier, devendo ser levado em consideração que um empreendimento minerário possui um prazo de implantação e amortização dos investimentos relativamente longo, dependendo da situação superior a 5 anos, sendo necessário que o período de vigência da licença seja compatível com tal peculiaridade.

Se a área requerida estender-se ao território de município vizinho, o requerente deverá obter a licença também naquela prefeitura.

A emissão da Licença Municipal não dá direito ao requerente de iniciar os trabalhos de lavra. Tal atividade somente poderá iniciar-se após a publicação em Diário Oficial, pelo DNPM, do competente título e emissão pelo órgão ambiental das devidas licenças. Existe todo um trâmite a ser cumprido para a regularização da atividade, cujos procedimentos são esclarecidos nas páginas do DNPM e do Instituto Ambiental do Paraná - I-AP, na Internet (www.pr.gov.br/iap).

Compensação Financeira Pela Exploração De Recursos Minerais - CFEM

A CFEM, instituída pela Lei № 7.990, de 28 de dezembro de 1989, é devida pelos detentores de direito minerário, em decorrência da exploração dos recursos minerais para fins de aproveitamento econômico. Para os minérios regidos pelo sistema de licenciamento, é calculada sobre o valor de 2% do faturamento líquido, considerado como tal o valor de venda do produto mineral, deduzidas os impostos incidentes na comercialização, bem como as despesas com transporte e seguros. Quando não ocorre a venda, porque o produto mineral é consumido, transformado ou utilizado pelo próprio minerador, considera-se então como valor para efeito de cálculo da CFEM, a soma das despesas diretas e indiretas ocorridas até o momento da utilização do produto mineral.

Os recursos da CFEM são distribuídos da seguinte forma: 12% para a União, 23% para o Estado e 65% para o município produtor. Considera-se como município produtor aquele no qual ocorre a extração da substância mineral. Caso a área licenciada abranja mais de um município, deverá ser preenchida uma guia de recolhimento para cada município, observada a proporcionalidade da produção efetivamente ocorrida em cada um deles.

O pagamento da Compensação Financeira deverá ser efetuado mensalmente até o último dia útil do segundo mês subseqüente ao fato gerador, nas agências do Banco do Brasil, por meio da guia de recolhimento/CFEM.

Como registrar uma pedreira municipal

A exploração de pedreiras e saibreiras é uma atividade comum nas Prefeituras, pelo menos nos municípios em que ocorrem jazidas de rochas e saibros utilizáveis na conservação de estradas, construção de açudes, calçamento de vias urbanas e outras obras públicas. Esta atividade é enquadrada no regime de extração, de uso exclusivo do poder público, sendo regulamentada pelo Decreto Nº 3.358, de 2 de fevereiro de 2000, cujo Art. 2º determina que ela é permitida aos órgãos da administração direta e autárquica, "para uso exclusivo em obras públicas por eles executados diretamente, respeitados os direitos minerários em vigor nas áreas onde devam ser executadas as obras, e vedada a comercialização".

É, portanto, proibida a cessão ou transferência do registro de extração, bem como a contratação de terceiros para a execução das atividades de extração em áreas concedidas ao poder público. O registro da extração pode ser feito em área onerada, isto é, com direitos minerários já autorizados pelo DNPM, sob regime de concessão, desde que o titular destes direitos autorize expressamente a extração pela Prefeitura. A extração é limitada a uma área máxima de 5 (cinco) hectares, sendo requerida ao 13º Distrito do DNPM, em Curitiba, mediante a apresentação dos seguintes documentos, elaborados por profissional legalmente habilitado junto ao CREA e acompanhados da respectiva Anotação de Responsabilidade Técnica:

- 1. qualificação do requerente;
- indicação da substância mineral a ser extraída;
- 3. memorial contendo:
 - informações sobre a necessidade de utilização da substância mineral indicada em obra pública devidamente especificada, a ser executada diretamente pelo requerente;
 - dados sobre a localização e extensão, em hectares, da área requerida;
 - indicação dos prazos previstos para o início e conclusão da obra;
- 4. planta de situação e memorial descritivo da área;
- 5. Licença de Operação, expedida pelo IAP.

A critério do DNPM, poderão ser formuladas exigências sobre dados considerados necessários à melhor instrução do processo, inclusive projeto de extração elaborado por técnico legalmente habilitado. Não atendidas as exigências no prazo de 30 (trinta) dias, contados a partir da data de publicação da exigência no Diário Oficial da União, o requerimento será indeferido.

O registro de extração será cancelado quando:

- for constatada a comercialização das substâncias minerais extraídas, a extração de substância mineral não autorizada e/ou a extração for realizada por terceiros;
- as substâncias minerais extraídas não forem utilizadas em obras públicas executadas diretamente pela Prefeitura Municipal;
- a extração não for iniciada dentro do prazo de um ano, contado a partir da data de publicação do registro;
- a extração for suspensa por tempo indeterminado, sem comunicação ao DNPM;
- a Prefeitura Municipal n\u00e3o renovar o registro, ao se expirar o seu prazo de validade.

GESTÃO AMBIENTAL

Riscos ambientais

No município de Bituruna, o lixo é um problema sério. Foi iniciado um programa de reciclagem de lixo, porém não ocorreu uma continuidade e todo o lixo coletado na cidade é levado para o lixão, na localidade de Santa Gema. Este depósito está situado logo acima da Vila São João, que é uma ocupação irregular de terrenos, cuja população utiliza fontes de água no mesmo local. O material ali separado é apenas o de maior interesse econômico, tais como alumínio e papel.

Um grande problema da cidade são os enormes montes de serragem proveniente das serrarias, que poderiam abastecer os fornos das cerâmicas locais e da região. Está sendo cogitada a possibilidade de se instalar uma termo-elétrica para consumir esta serragem.

No propósito de esclarecer os administradores municipais de Bituruna quanto aos requisitos da gestão ambiental, no que diz respeito aos aterros sanitários, sintetizamos a seguir as informações pertinentes. Estas informações não substituem uma consultoria técnica, que deve ser contratada pela Prefeitura para executar o projeto adequado.

As áreas potenciais à contaminação de aqüíferos superficiais e subterrâneos são caracterizados como situações de risco ambiental de caráter preventivo, pois requerem monitoramento intensivo da descarga de efluentes industriais, domésticos e de agentes poluentes, provenientes principalmente de postos de combustíveis, lavadores de automóveis, tanques de graxa e óleo, esgoto doméstico e industrial.

O conhecimento dos diferentes agentes que podem ocasionar a poluição dos recursos hídricos tem destacada importância no processo de prevenção. Estes agentes precisam ser dectetados para que os seus impactos possam ser controlados. A grande diversidade de fontes poluidoras da água torna bastante difícil a síntese das mesmas. A classificação que segue procura mostrar as principais origens da poluição das águas superficiais e subterrâneas, que podem comprometer os mananciais.

- Esgotos domésticos Provocam contaminação tanto bacteriológica, por meio dos dejetos humanos, como química, pela presença de produtos químicos de uso doméstico, entre eles os detergentes.
- Esgotos hospitalares Produzem poluentes químicos e bacteriológicos, altamente tóxicos, capazes de provocar focos infecciosos e surtos de doenças epidêmicas. A exemplo da situação de despejo dos esgotos domésticos, estes também merecem especial atenção das autoridades municipais.
- Esgotos industriais São poluentes essencialmente químicos, incluindo todos os tipos de águas residuais, efluentes de indústrias e postos de combustíveis (óleos, graxas, querosene, gasolina, etc).
- Percolação de depósitos residuais sólidos Compreende as águas que antes de atingirem os corpos aquosos percolam depósitos de resíduos sólidos, domésticos ou industriais, como é o caso dos aterros sanitários. Enquanto nos resíduos domésticos predominam os poluentes bacteriológicos, nos resíduos industriais são mais comuns os químicos.
- **Produtos químicos agrícolas** São os adubos, corretivos de solos, inseticidas e herbicidas, freqüentemente usados na lavoura e que as águas de escoamento

- podem carrear para os leitos dos rios, provocando a poluição química dos mesmos.
- Produtos de atividades pecuárias e granjeiras Este é um tipo de poluição essencialmente orgânico e biológico. Os poluentes, muito semelhantes aos das atividades domésticas são levados pelas águas superficiais dos rios. As purinas das criações de porcos constituem os contaminantes mais expressivos, enquanto que os produtos de granjas avícolas, de um modo geral são menos poluentes.

Aterros sanitários

Informações gerais

Os aterros sanitários foram implantados no Brasil a partir de 1968 e são a forma de tratamento de resíduos sólidos mais utilizada no país, superando largamente a incineração e a compostagem.

A Legislação Ambiental Brasileira é um conjunto bastante desconexo e até contraditório de leis, decretos e portarias geradas a nível federal e estadual, sem contar as eventuais regulamentações municipais. É impraticável resumir toda legislação existente, que pode ser localizada na obra *Lixo municipal: manual de gerenciamento integrado*, editado pelo Instituto de Pesquisas Tecnológicas - IPT e pelo Compromisso Empresarial Para Reciclagem - CEMPRE, em 2000. Comentamos a seguir apenas os aspectos mais importantes desta legislação.

Por força da Lei nº 6.938/81, as prefeituras brasileiras participam do Sistema Nacional de Meio Ambiente - SISNAMA, com a atribuição de avaliar e estabelecer normas, critérios e padrões relativos ao controle e à manutenção da qualidade do meio ambiente com vistas ao uso racional dos seus recursos, supletivamente ao Estado e à União. Esta atribuição desdobra-se em ações voltadas ao saneamento ambiental, o abastecimento de água, a drenagem pluvial, o tratamento de esgotos e resíduos sanitários. O Plano Diretor Municipal fornece a regulamentação básica para as ações da Prefeitura, definindo os critérios para a seleção de áreas destinadas aos resíduos domiciliares, industriais, hospitalares, perigosos e entulhos. Com base no Plano Diretor, a Lei de Uso e Ocupacão do Solo estabelece zonas específicas para a deposição dos resíduos e entulhos. além de prever a elaboração de EIA/RIMA ou laudos técnicos para os empreendimentos de grande porte ou que venham a por em risco a qualidade do meio ambiente. O Código de Obras, por sua vez, pode exigir o uso de equipamentos para o tratamento prévio de esgotos e efluentes, antes de serem lançados nos cursos d'água. Finalmente, o Código de Posturas regulamenta a utilização dos espaços públicos ou de uso coletivo, disciplinando a disposição dos resíduos nas áreas previstas e podendo implantar a coleta seletiva do lixo urbano.

Das inúmeras leis, decretos e portarias vigentes no País, algumas são relacionadas abaixo, em ordem cronológica de edição, pela sua importância mais imediata para a gestão dos aterros sanitários, a nível municipal.

- Decreto-Lei nº 1.413, de 14 de agosto de 1975, dispõe sobre o controle da poluição do meio ambiente provocada por atividades industriais.
- Decreto nº 76.389, de 3 de outubro de 1975, dispõe sobre as medidas de prevenção e controle da poluição industrial, de que trata o Decreto-Lei nº 1.413, de 14 de agosto de 1975, e dá outras disposições.

- Decreto nº 79.367, de 9 de março de 1977, dispõe sobre normas e o padrão de potabilidade de água e dá outras providências.
- Portaria nº 53 do Ministério do Interior, de 1º de março de 1979, estabelece as normas para projetos específicos de tratamento e disposição de resíduos sólidos, inclusive tóxicos e perigosos, bem como a fiscalização de sua implantação, operação e manutenção.
- Lei nº 6.766, de 19 de dezembro de 1979, dispõe sobre o parcelamento do solo urbano e dá outras providências.
- Lei nº 7.347, de 24 de julho de 1985, disciplina Ação Civil Pública de Responsabilidade Por Danos Causados ao Meio Ambiente e outros.
- Decreto nº 93.630, de 28 de novembro de 1986, regulamenta as leis que dispõem sobre a Política Nacional do Meio Ambiente e a criação de Estações Ecológicas e Áreas de Proteção Ambiental, e dá outras providências.
- Lei nº 7.754, de 14 de abril de 1989, estabelece medidas para a proteção das florestas estabelecidas nas nascentes dos rios e dá outras providências.
- Lei nº 7.802, de 11 de julho de 1989, dispõe sobre o transporte, o armazenamento, a utilização e o destino final dos resíduos e embalagens de agrotóxicos, entre outras atividades relacionadas, e dá outras providências.
- Decreto nº 99.274, de 6 de junho de 1990, regulamenta as leis que dispõem sobre a Política Nacional do Meio Ambiente e a criação de Estações Ecológicas e Áreas de Proteção Ambiental, e dá outras providências.
- Decreto nº 2.120, de 13 de janeiro de 1997, dá nova redação aos artigos 5, 6, 10 e 11 do Decreto nº 99.274, de 6 de junho de 1990.
- Lei nº 9.605, de 12 de fevereiro de 1998, conhecida como Lei de Crimes Ambientais, dispõe sobre as sanções penais e administrativas derivadas de condutas e atividades lesivas ao meio ambiente e dá outras providências.
- Resolução nº 257 do CONAMA, de 30 de junho de 1999, define critérios para a destinação final, ambientalmente adequada, de pilhas e baterias.

Além da legislação que dispõe sobre a gestão dos resíduos sólidos, adota-se no Brasil, como um guia geral, o conjunto de normas da ABNT – Associação Brasileira de Normas Técnicas, das quais merecem atenção por parte do administrador público municipal as seguintes:

- A NBR 8419/92 recomenda modelo para a apresentação de projetos de aterros sanitários de resíduos sólidos urbanos.
- A NBR 10004/87 estabelece os critérios para a classificação dos resíduos sólidos industriais, que são divididos em três categorias: Classe I resíduos perigosos, com poder de contaminação da água; Classe II resíduos que não perigosos nem inertes; e Classe III resíduos inertes, que podem ser misturados à água sem contaminá-la.
- A NBR 10005/87 recomenda rotinas de campo e laboratório para a execução de testes de lixiviação, tendo em vista determinar o grau de toxicidade do chorume e do resíduo insolúvel.

- A NBR 10006/87 estabelece um método de solubilização para determinar a toxicidade dos resíduos sólidos.
- A NBR 10007/87 recomenda critérios para a coleta de amostras, tendo em vista a aplicação dos ensaios de laboratório. Outras definem os critérios para a execução de aterros industriais de resíduos, para o transporte, para o armazenamento de resíduos perigosos e para a construção dos poços de monitoramento de aterros.
- A NBR 10157/87 estabelece critérios para projeto, construção e operação de aterros de resíduos perigosos.
- As NBR 12807, 12808, 12809 e 12810/93 definem, classificam e estabelecem os procedimentos para a coleta e manuseio dos resíduos de serviços de saúde.
- As NBR 13895 e 13896/97 estabelecem critérios para projeto, implantação e operação de aterros de resíduos não-perigosos, com a construção de poços de monitoramento e amostragem.

Para que a gestão de resíduos seja feita com eficiência, isto é, economia de recursos, é preciso combinar pelo menos três tipos de medidas: (a) reduzir o volume do lixo produzido na cidade, (b) reaproveitar os materiais recicláveis e (c) construir aterros sanitários.

A redução do volume do lixo requer uma política municipal de efeitos a longo prazo, que incentive a adoção de medidas para o melhor aproveitamento dos materiais recicláveis, ainda dentro das residências, nos estabelecimentos comerciais e nas indústrias. A separação do lixo na origem é o recurso mais utilizado para se chegar à redução seletiva de resíduos. Em média, o lixo urbano brasileiro contém, em peso, cerca de 50% de resíduos orgânicos, 35% de de materiais recicláveis e 15% de outros materiais não aproveitáveis.

A reciclagem é uma medida indispensável, hoje em dia, não apenas pelos seus benefícios ambientais, mas principalmente pelo seu potencial econômico. Quando o volume de resíduos recicláveis não viabiliza a instalação de uma unidade de tratamento no município, a solução deve ser a nível de micro-região, combinando os interesses dos municípios vizinhos. São materiais preferenciais para a reciclagem os plásticos, papéis, vidro e alumínio, além de outros metais menos utilizados.

Somente depois de tomadas medidas de redução do volume inicial e da reciclagem é que se deve fazer o tratamento dos resíduos. Isto significa que, mesmo que atualmente seja inviável para a Prefeitura promover uma redução efetiva e a reciclagem de resíduos, a administração municipal deve criar um programa de gestão ambiental que inicie estudos neste sentido, de preferência junto com prefeituras vizinhas. Estes estudos não precisam consumir grandes investimentos, porque podem ser desenvolvidos por estudantes e ambientalistas da região, em projetos de caráter voluntário. Eles subsidiarão as decisões da Prefeitura com dados, informações e propostas de políticas, projetos comunitários e outras medidas de ordem prática.

Adotadas estas medidas, é possível implantar um aterro sanitário que receba volumes progressivamente menores de resíduos, estendendo a sua vida útil, gerando benefícios sociais e racionalizando a gestão ambiental. O aterro sanitário deve ser visto, por-

tanto, como um depósito dos materiais que não podem ser reaproveitados, exclusivamente.

Os resíduos orgânicos, tanto domésticos quanto os rejeitos da indústria petroquímica, podem ser misturados ao próprio solo, em áreas com lençol freático muito profundo. Revolvidos periodicamente, estes resíduos são oxidados pelas bactérias do solo e são estabilizados depois de alguns meses.

Requisitos de engenharia de um aterro sanitário

O aterro sanitário distingue-se do lixão porque nele os resíduos são depositados de forma planejada sobre uma área previamente preparada, tendo em vista evitar a sua dispersão no ambiente, tanto dos resíduos quanto do chorume. Esta dispersão é evitada por meio de obras relativamente simples de engenharia sanitária, que impedem a contaminação das águas superficiais e subterrâneas, do solo e do ecossistema como um todo.

A técnica mais simples de aterramento consiste em abrir valas cujo fundo esteja acima do lençol freático a uma distância de pelo menos 1,5 metro, em áreas onde o solo tenha espessura maior do que 3 metros. Este solo deve ser bastante argiloso, com permeabilidade inferior a 10⁻⁵ centímetros por segundo. Isto significa uma baixa permeabilidade, que retém a percolação do chorume e faz com que ele demore vários anos antes de chegar ao lençol freático. Estas características do terreno e das valas são as mais importantes do aterro, porque são elas que garantem a defesa do ambiente contra a contaminação.

O aterramento simples vale, entretanto, apenas para os resíduos domésticos e industriais comuns, sem materiais tóxicos, tais como resíduos hospitalares e embalagens de defensivos agrícolas. Os resíduos tóxicos exigem aterros totalmente impermeabilizados. A impermeabilização pode ser feita pela deposição de uma camada de argilas selecionadas na região, pelo uso de lonas plásticas, mantas de *bidin* ou camadas de concreto.

São passíveis de serem depositados em aterros apenas os materiais que, por degradação ou retenção no solo, não apresentam a possibilidade de se infiltrar e contaminar o lençol freático. A degradação é produzida principalmente por bactérias e gera emanações de gás metano, que é inflamável e pode ser usado como combustível para a incineração do próprio lixo. Por isto, sempre existe o risco de incêndios e explosões sobre os lixões, que não têm qualquer espécie de controle. A infiltração no solo dá-se na forma de chorume, que é fortemente ácido e rico em metais pesados, entre outras substâncias. Devido a estas características, ele não pode entrar em contato direto com a água superficial ou subterrânea. Entretanto, a sua lenta percolação pelo solo permite que as argilas extraiam a maior parte dos metais e reduzam a acidez, anulando os seus efeitos nocivos sobre a água.

A preparação do terreno pode ser feita por meio de três modalidades: trincheira, rampa ou área aberta. A escolha de um destes modelos depende das condições locais do terreno, mas todos exigem a compactação do solo antes de se iniciar a deposição dos resíduos. Diariamente, um trator de esteira faz a compactação do lixo depositado, mantendo uma rampa lateral com inclinação de 1:3, isto é, a rampa sobe 1 metro a cada 3 metros de distância horizontal. Após a compactação, o lixo recebe uma fina camada

de argila, que é também compactada de baixo para cima na rampa, com duas ou três passadas do trator. Cada camada de resíduos é levantada até chegar a um máximo de 5 metros. A argila é usada para isolar cada camada e fazer com que se inicie imediatamente a digestão bacteriana dos resíduos.

Após um período que varia de 10 a 100 dias, completa-se a digestão aeróbica (com a presença de oxigênio) e começa a anaeróbica (sem oxigênio). Durante a segunda fase, eleva-se a temperatura e formam-se álcoois, ácidos, acetatos e gases, que devem permanecer dentro do aterro, tornando o ambiente fortemente ácido. Desta forma, há condições para a formação de outros microorganismos e gases, cujos produtos finais são o metano e o gás carbônico. Todo este processo de depuração leva de 8 a 10 anos após o aterramento.

De modo geral, os critérios técnicos adotados para definição dos terrenos mais adequados para disposição dos rejeitos sólidos, devem levar em conta:

- Tipo de solo. Solos residuais pouco espessos são considerados inaptos; solos permeáveis, com espessuras superiores a 3 metros facilitam a depuração de bactérias, chorume, compostos químicos e outros.
- **Nível freático.** Superior a 5 metros, evitando contaminação direta com águas de subsuperfície.
- Declividade. Áreas com baixa declividade para minimizar os escoamentos para a área do aterro. Em caso contrário deve ser implantado um sistema de drenagem para desvio das águas superficiais.
- Localização. Distâncias superiores a 200 metros das cabeceiras de drenagem para evitar contaminação dos cursos d'água. Proximidade de solos de fácil escavabilidade e com boas características de material de aterro, para cobertura das células de lixo.
- **Direção dos ventos.** Deve ser preferencialmente contrária à ocupação urbana.

Tendo em vista determinar estes parâmetros, um projeto de implantação de aterro sanitário envolve normalmente os seguintes estudos, que podem ser executados no período médio de um mês:

- levantamento topográfico em escala de grande detalhe
- mapeamento geológico e geotécnico de grande detalhe
- elaboração de EIA-RIMA
- sondagens geotécnicas de reconhecimento do tipo SPT
- ensaios de permeabilidade do solo no local
- ensaios geotécnicos de laboratório
- análises físico-químicas e bacteriológicas de chorume

Segundo orientação fornecida pela Superintendência de Desenvolvimento de Recursos Hídricos e Saneamento Ambiental - SUDERHSA, a escolha de áreas para avaliação pelo IAP e liberação de Licença Prévia, deve levar em consideração os seguintes critérios básicos de localização:

- Fora da zona urbana e da sua área de expansão, situando-se até 3 km longe do centro da cidade.
- Longe de áreas de mananciais, pelo menos a 200 m das drenagens.
- Facilidade de acesso.
- Terreno aproximadamente plano.

Redes elétrica e de água próximas.

A Caixa Econômica Federal financia projetos de aterros sanitários, desde que a Prefeitura Municipal:

- Tenha obtido junto ao IAP a Licença Prévia.
- Área com terreno registrado em nome da Prefeitura no Cartório de Registro de Imóveis.
- Dotação orçamentária aprovada no valor equivalente a 25% da obra.

GESTÃO TERRITORIAL

A Prefeitura Municipal de Bituruna pretende transferir as famílias instaladas na Vila São João, área de grande declividade. A título de orientação, transcrevemos a seguir o texto integral de um capítulo do *Guia de Prevenção de Acidentes Geológicos Urbanos*, da MINEROPAR.

A ocupação urbana no Brasil tem ocorrido desordenadamente e sem o mínimo conhecimento sobre as características do meio físico, colocando a população freqüentemente em situações de risco que podem evoluir até a deflagração de acidentes geológicos propriamente ditos. Essa situação não se restringe apenas aos grandes núcleos urbanos, mas também afeta as comunidades urbanas de menor porte e mesmo as áreas rurais.

A prevenção de acidentes geológicos urbanos é possível a partir da identificação e análise das áreas de risco. Estas, por sua vez, são enfocadas em trabalhos prévios de análise do meio físico, comumente denominados mapeamentos geotécnicos.

O mapeamento geotécnico aplicado ao planejamento territorial e urbano utiliza bases do meio físico com a finalidade de orientar o uso da terra, a análise ambiental e as obras civis. A geotecnia classifica e analisa os recursos naturais do meio físico quanto às suas limitações e potencialidades, representando este processo cartograficamente por meio do mapeamento geotécnico. Além disto, avalia esses recursos quanto à adequabilidade segundo critérios que visem o equilíbrio e desenvolvimento para estudos de viabilidade, projeto, construção, manejo e monitoramento. Neste contexto é de fundamental importância a caracterização das áreas de riscos geológicos e a proposição de medidas de prevenção dos acidentes correlatos, com a indicação dos locais ameaçados, sua quantificação e prioridades, expressos em cartas de zoneamento de riscos geológicos.

Segundo Cerri e Amaral (1998), as medidas de prevenção de acidentes geológicos podem ser dirigidas para evitar a ocorrência ou reduzir a magnitude do(s) processo(s) geológico(s), para eliminar ou reduzir as conseqüências sociais e/ou econômicas decorrentes, ou para ambas, simultaneamente. Os autores consideram ainda que, além da possibilidade de remoção definitiva dos moradores das áreas sujeitas a risco (procedimento raramente colocado em prática devido às dificuldades inerentes a esta ação), a prevenção de acidentes geológicos urbanos deve considerar os seguintes objetivos:

- eliminar e/ou reduzir os riscos já instalados;
- evitar a instalação de novas áreas de risco;
- conviver com os riscos atuais.

Em razão das características de cada situação de risco em particular e com base nesses objetivos estabelecidos, Cerri e Amaral consideram que podem ser adotadas diferentes medidas de prevenção de acidentes geológicos, cada qual associada a uma ação técnica específica, conforme resumido no quadro a seguir:

Tabela 7. Medidas de prevenção de riscos geológicos, segundo Cerri e Amaral (1998).

OBJETIVO	MEDIDA DE PREVENÇÃO	AÇÃO TÉCNICA
Eliminar e/ou reduzir os riscos já instalados	Recuperação das áreas de risco	Perenização da ocupação (quando possível), por meio de projetos de urbanização e da implantação de obras de engenharia, que se destinam a evitar a ocorrência dos processos geológicos e/ou reduzir a magnitude destes processos, com diminuição da área a ser atingida. A definição da concepção mais adequada de cada obra de engenharia depende, fundamentalmente, do entendimento dos processos geológicos considerados.
Evitar a instalação de novas áreas de risco	Controle da expansão e do adensamento da ocupação	Estabelecimento de diretrizes técnicas que permitam adequada ocupação do meio físico, expressas em cartas geotécnicas, que se constituem em instrumentos básicos, dado que reúnem informações do meio físicogeológico, indispensáveis ao planejamento de uma ocupação segura.
Conviver com os riscos naturais	Remoção preventiva e temporária da população instaladas nas áreas de risco eminente	Elaboração e operação de Planos de Defesa Civil, visando reduzir a possibilidade de regis- tro de perda de vidas humanas, após ser constatada a iminente possibilidade de ocor- rência de acidentes geológicos.

CONCLUSÕES E RECOMENDAÇÕES

Potencial mineral

Argilas. Quatro amostras coletadas nos aluviões do rio Jararaca foram submetidas a ensaios cerâmicos, com outras quatro resultantes da mistura com latossolo das imediações, cujos laudos atestam a sua adequação como matéria-prima de cerâmica estrutural, na produção de tijolos. Estes resultados recomendam o desenvolvimento de pesquisa de detalhe para confirmação do potencial e dimensionamento das reservas, tendo em vista a viabilização de investimentos no setor. Esta possibilidade deve ser avaliada pela Prefeitura, uma vez que uma jazida de boa qualidade poderá contribuir para a recuperação das olarias do município, que se encontram em situação falimentar.

Pedras de brita, corte e cantaria. Tendo em vista assessorar a Prefeitura de Bituruna no aperfeiçoamento técnico da pavimentação poliédrica, que é usada no município, recomenda-se utilizar o manual *Paralelepípedos e Alvenaria Poliédrica: Manual de Utilização*, da MINEROPAR. Existem vantagens econômicas e sociais na opção por este tipo de pavimento, quando comparado ao asfalto, que devem ser exploradas pela administração municipal em benefício da sua comunidade.

Saibro. Bituruna tem abundância de saibro para as obras de conservação das estradas municipais, dispensando preocupações com a localização de jazidas. Esta abundância resulta da morfologia especial do relevo da região, que favorece a formação de solos rasos e imaturos, que são os materiais preferenciais para este uso. Na ausência de areia, as proporções de argilas e fragmentos de basalto resultam favoráveis e tornam o saibro de origem basáltica excelente material de empréstimo para as obras viárias do município.

Água subterrânea. Bituruna situa-se na zona hidrogeológica mais desfavorável do Terceiro Planalto Paranaense, dentro da qual as vazões de produção não excedem 25 m³/hora e são freqüentes os poços secos. Isto requer das autoridades municipais a adoção de medidas de preservação dos mananciais de superfície. Quando indispensável, a perfuração de poços exige muito conhecimento do comportamento da água subterrânea nesta região, por parte das empresas contratadas. Elas devem trabalhar com critérios técnicos adequados e demonstrar experiência comprovada na região, onde os controles estruturais sobre a distribuição das vazões dependem da combinação de fraturas regionais com zonas permeáveis no basalto.

Água mineral. Uma amostra coletada em uma fonte de água sulfurosa, junto ao lago da represa de Salto Segredo, foi encaminhada para análise química e bacteriológica, no Laboratório de Pesquisas Hidrogeológicas da Universidade Federal do Paraná. Ela apresenta uma composição típica de água mineral alcalino-bicarbonatada fluoretada, com altos teores de cloreto e sódio, muito acima dos normalmente obtidos nas águas minerais do Terceiro Planalto Paranaense. O seu caráter sulfuroso, embora evidente na fonte e confirmado pelo geólogo durante a coleta, não foi detectado na análise porque a amostra não foi encaminhada ao laboratório em menos de 6 horas após a coleta. Por outro lado, o laudo bacteriológico confirma a potabilidade e boa qualidade da água para consumo. Considerando estes resultados, que caracterizam uma água mineral com propriedades terapêuticas, e o possível interesse da Prefeitura em promover a exploração comercial da fonte, recomendamos consultar o DNPM para orientação sobre a sua classificação oficial. Para a exploração de estância hidromineral, os procedimentos legais

para a regularização do aproveitamento econômico enquadram-se no regime de licenciamento, apresentados neste relatório.

Gestão ambiental

A Prefeitura de Bituruna necessita urgentemente implementar um projeto de aterro sanitário. Os subsídios técnicos oferecidos no presente relatório visam contribuir para que as autoridades municipais disponham de informações adicionais sobre os requisitos exigidos para a execução deste projeto. Estas informações são oportunas, porque tem sido constatada a falta de critérios técnicos adequados e, principalmente, fundamentados no que dispõe a legislação brasileira, nos projetos em execução nos municípios paranaenses. Vale ressaltar, entretanto, que é exigência da SUDERHSA que o projeto de aterro sanitário municipal seja contratado a uma empresa especializada, tendo em vista o interesse em se garantir que ele seja completo e atenda igualmente a todos os requisitos técnicos e legais.

Gestão territorial

A Prefeitura de Bituruna pretende transferir as famílias da Vila São João, local de topografia com alta declividade para outros locais, ainda não definidos e em processo de desapropriação. Quando forem escolhidos os locais, deverá ser feita uma vistoria para verificar se eles atendem os requisitos geotécnicos de ocupação residencial.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABINAM, Associação Brasileira da Indústria de Águas Minerais, internet http://www.abinam.com.br, 2001.
- CERRI, L.E.S. e AMARAL, C.P. Riscos geológicos. In: OLIVEIRA, A.M.S.; BRITO, S.N.A. Geologia de Engenharia. São Paulo: ABGE, 1998. p. 301-310.
- EMBRAPA, Empresa Brasileira de Pesquisas Agropecuárias, Sistema Brasileiro de Classificação de Solos, internet http://www.cnps.embrapa.br/, 2001.

IBGE/Base Pública de Dados. Caderno estatístico do município de Bituruna. 2000.

INSTITUTO DE PESQUISAS TECNOLÓGICAS. Lixo municipal: manual de gerenciamento integrado. Coordenação: Maria Luiza Otero D'Almeida, André Vilhena. 2ª edição. São Paulo: IPT/CEMPRE, 2000. Publicação IPT 2622.

- MAAK, R. Notas preliminares sobre as águas do sub-solo da Bacia Paraná-Uruguai. Curitiba, Comissão Interestadual da Bacia Paraná-Uruguai, 1970.
- MINEROPAR, Minerais do Paraná S/A Levantamento das Potencialidades Minerais dos Municípios de Irati e Prudentópolis, Curitiba, 1992, 30p., anexos.
- Geologia de Planejamento Caracterização do Meio Físico de Quinta do Sol, Curitiba, 1994, 29p, anexos.

 Guia de prevenção de acidentes geológicos urbanos. Curitiba: MINEROPAR, 1998, 52 páginas.

 Nota explicativa do mapa geológico do Estado do Paraná. Curitiba, 1999, 28 p.

 Paralelepípedos e alvenaria poliédrica: manual de utilização. Curitiba, 1983, 87 p.

 Perfil do setor da água no Estado do Paraná. Curitiba, 2000, 57 p., anexos.
- ROSA FILHO, E. F. da; SALAMUNI, R. e BITTENCOURT, A. V. L. Contribuição ao estudo das águas subterrâneas nos basaltos no Estado do Paraná. Curitiba, UFPR, Boletim Paranaense de Geociências, nº 37, p. 22-52, 1987.

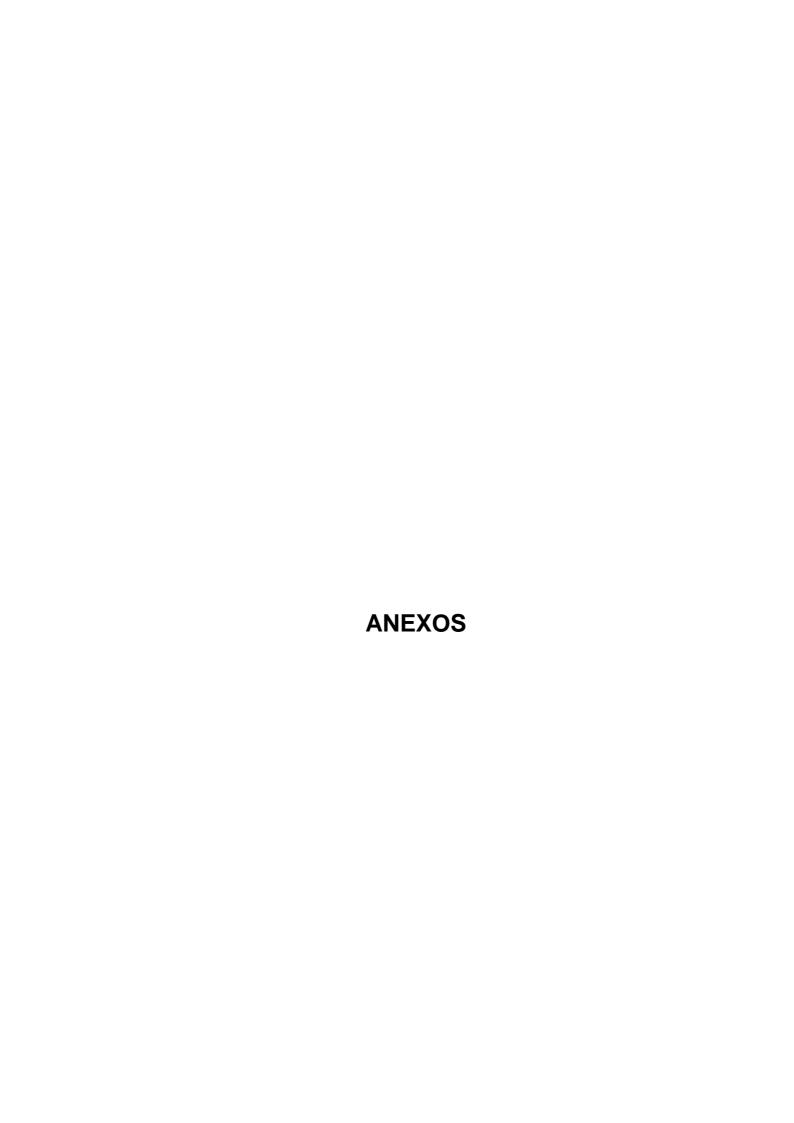


Foto 1. Entrega ao Prefeito de Bituruna do diploma de participação no Projeto RIQUEZAS MINERAIS.

Foto 2. Vila São João, loteamento em local de alta declividade.

Foto 3. Local escolhido pela Prefeitura para reassentar os moradores da Vila São João.

Foto 4. Relevo moderado na parte sul do município de Bituruna.

Foto 5. Relevo acidentado na parte norte do município de Bituruna, às margens dos lagos das represas de Salto Segredo e Salto Santiago.

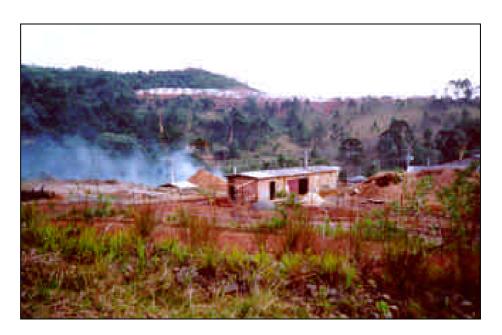


Foto 6. Local de captação de água de abastecimento no rio Herval, entre o bairro Bela Vista e uma serraria.

Foto 7. Montes de serragem espalhados pela cidade de Bituruna.

Foto 8. Vista parcial do lixão da cidade de Bituruna.

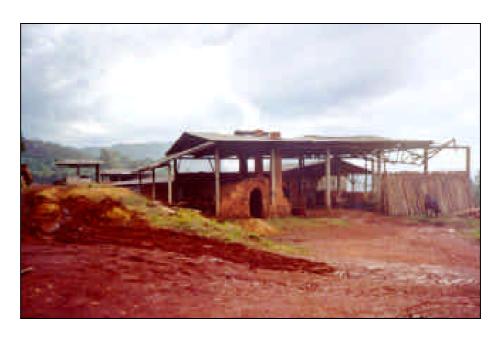


Foto 9. Vista geral da Cerâmica 91 Ltda.

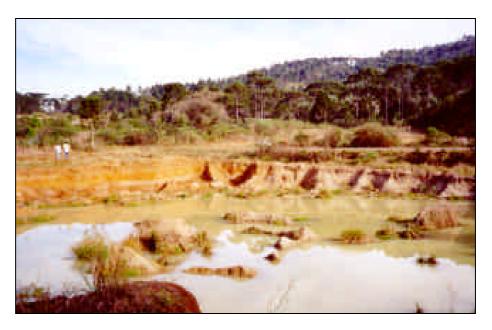


Foto 10. Cava na frente de lavra da Cerâmica 91 Ltda.

Foto 11. Execução de furos a trado em aluviões do rio Jararaca.

Foto 12. Vista da argila cinza, proveniente da alteração de rochas ácidas da Formação Serra Geral.

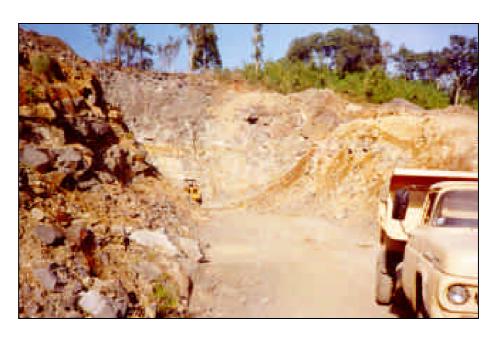


Foto 13. Vista da pedreira da empresa Grezelle & Grezelle Ltda.

Foto 14. Vista de uma pedreira de onde são extraídos blocos para uso em calçamento com poliedros irregulares.

Foto 15. Saibreira explorada pela Prefeitura de Bituruna.

Foto 16. Afloramento de basalto fraturado em forma de placas.

Foto 17. Perfil de solo mostrando níveis lateríticos.

Foto 18. Local de ocorrência da fonte de água mineral sulfurosa de Bituruna.

Modelo de licença para aproveitamento de substância mineral

PREFEITURA MUNICIPAL DE BITURUNA

LICENÇA N° / 2001

tendo em vista o que dispõe o art. 11, § único, do Regulamento do Código de Mineração, combinado com a Lei 6567 de 24 de setembro de 1978 e de conformidade com a Portaria 148 de 27 de outubro de 1980, do Diretor Geral do DNPM, concede à, registrada no CGC sob número, e na Junta Comercial sob número, com sede no Município de Bituruna, Estado do Paraná, LICENÇA para extração de, em terrenos de propriedade de, em uma área de, em tectares,
pelo prazo de anos, neste Município, destinando-se os materiais extraídos ao emprego
em
As atividades de extração SOMENTE PODERÃO TER INÍCIO após a obtenção de:
 REGISTRO DE LICENCIAMENTO junto ao DNPM, 13° Distrito/PR, conforme Portaria 148/80 do Diretor Geral do DNPM.
 LICENÇA AMBIENTAL DE OPERAÇÃO (L.O.), expedida pelo Instituto Ambiental do Paraná, conforme Resolução CONAMA nº 010 de 06 de dezembro de 1990.
A renovação da presente LICENÇA para extração mineral fica condicionada à comprovação da regularidade no pagamento da Compensação Financeira Pela Exploração de Recursos Minerais - CFEM, de acordo com o Decreto nº 1 de 11 de janeiro de 1991.

Assinatura
Prefeito Municipal

Bituruna, de de 2001

ENSAIOS TECNOLÓGICOS DE ARGILA

Projeto...... RIQUEZAS MINERAIS - MUNICÍPIO DE BITURUNA - PR

Amostra...... BT 01 UTM: 0447205 E / 7195766 N

Nº de Laboratório: ZAB 600 Lote / Ano: 016/01

Ensaios realizados em corpos de prova de dimensões 6,0 x 2,0 x 0,5 cm, dados por prensagem.

CARACTERÍSTICAS DOS CORPOS DE PROVA SECOS À 110° C

Umidade de prensagem.....: 17,59 %

Retração Linear...... 0,17 %

Módulo de Ruptura..... 56,15 Kgf/cm2

Densidade aparente...... 1,56 g/cm3

Côr...... 10 YR 5/4 - Castor

CARACTERÍSTICAS DOS CORPOS DE PROVA APÓS QUEIMA

Temp. de queima ° c	Perda ao fogo %	Retração Linear %	Módulo de ruptura (kgf/cm2)	Absorção da água %	Porosidade aparente %	Densidade aparente (g/cm3)	Côr após queima
950	11,85	4,33	97,67	23,47	35,73	1,73	5 YR 5/8 Telha

Manual comparativo de cores empregado: "Munsell Soil Color Chart"

Recomendações:

A análise dos parâmetros físicos determinados para a amostra em questão, indica seu uso em cerâmica estrutural, na produção de tijolos.

Curitiba, 04/10/01

Katia Norma Siedlecki

Geóloga

ENSAIOS TECNOLÓGICOS DE ARGILA

Projeto...... RIQUEZAS MINERAIS - MUNICÍPIO DE BITURUNA - PR

Amostra...... BT 01 - a UTM: 0447205 E / 7195766 N

Nº de Laboratório: ZAB 601 Lote / Ano: 016/01

Ensaios realizados em corpos de prova de dimensões 6,0 x 2,0 x 0,5 cm, dados por prensagem.

CARACTERÍSTICAS DOS CORPOS DE PROVA SECOS À 110° C

Umidade de prensagem.....: 17,89 %

Retração Linear...... 0,17 %

Módulo de Ruptura..... 54,78 Kgf/cm2

Densidade aparente...... 1,57 g/cm3

CARACTERÍSTICAS DOS CORPOS DE PROVA APÓS QUEIMA

Temp. de queima " c	Perda ao fogo %	Retração Linear %	Módulo de ruptura (kgf/cm2)	Absorção da água %	Porosidade aparente %	Densidade aparente (g/cm3)	Côr após queima
950	11,72	4,17	79,79	23,15	35,50	1,74	5 YR 5/8 Telha

Manual comparativo de cores empregado: "Munsell Soil Color Chart"

Recomendações:

A análise dos parâmetros físicos determinados para a amostra em questão, indica seu uso em cerâmica estrutural, na produção de tijolos.

Curitiba, 04/10/01

Katia Norma Siedlecki

Geóloga

ENSAIOS TECNOLÓGICOS DE ARGILA

Projeto...... RIQUEZAS MINERAIS - MUNICÍPIO DE BITURUNA - PR

Amostra...... BT 02 UTM: 0447907 E / 7104677 N

Nº de Laboratório: ZAB 602 Lote / Ano: 016/01

Ensaios realizados em corpos de prova de dimensões 6,0 x 2,0 x 0,5 cm, dados por prensagem.

CARACTERÍSTICAS DOS CORPOS DE PROVA SECOS À 110° C

Umidade de prensagem.....: 14,73 %

Retração Linear....: -0,17 %

Módulo de Ruptura..... 50,68 Kgf/cm2

Densidade aparente...... 1,52 g/cm3

Côr...... 10 YR 5/4 - Castor

CARACTERÍSTICAS DOS CORPOS DE PROVA APÓS QUEIMA

Temp. de queima ° c	Perda ao fogo %	Retração Linear %	Módulo de ruptura (kgf/cm2)	Absorção da água %	Porosidade aparente %	Densidade aparente (g/cm3)	Côr após queima
950	12,20	4,17	76,61	24,11	37,32	1,76	5 YR 5/8 Telha

Manual comparativo de cores empregado: "Munsell Soil Color Chart"

Recomendações:

A análise dos parâmetros físicos determinados para a amostra em questão, indica seu uso em cerâmica estrutural, na produção de Tijolos.

Curitiba, 04/10/01

Katia Norma Siedlecki

Geóloga

ENSAIOS TECNOLÓGICOS DE ARGILA

Projeto...... RIQUEZAS MINERAIS - MUNICÍPIO DE BITURUNA - PR

Amostra...... BT 02 - a UTM: 0447907 E / 7104677 N

Nº de Laboratório: ZAB 603 Lote / Ano: 016/01

Ensaios realizados em corpos de prova de dimensões 6,0 x 2,0 x 0,5 cm, dados por prensagem.

CARACTERÍSTICAS DOS CORPOS DE PROVA SECOS À 110° C

Umidade de prensagem......: 21,29 %

Retração Linear..... 1,17 %

Módulo de Ruptura..... 51,48 Kgf/cm2

Densidade aparente...... 1,55 g/cm3

CARACTERÍSTICAS DOS CORPOS DE PROVA APÓS QUEIMA

Temp. de queima ° c	Perda ao fogo %	Retração Linear %	Módulo de ruptura (kgf/cm2)	Absorção da água %	Porosidade aparente %	Densidade aparente (g/cm3)	Côr após queima
950	11,98	5,83	82,10	23,89	37,62	1,79	2,5 YR 4/8 Telha

Manual comparativo de cores empregado: "Munsell Soil Color Chart"

Recomendações:

A análise dos parâmetros físicos determinados para a amostra em questão, indica seu uso em cerâmica estrutural, na produção de tijolos.

Curitiba, 04/10/01

Katia Norma Siedlecki

Geóloga

ENSAIOS TECNOLÓGICOS DE ARGILA

Projeto...... RIQUEZAS MINERAIS - MUNICÍPIO DE BITURUNA - PR

Amostra...... BT 03 UTM: 0448125 E / 7103232 N

Nº de Laboratório: ZAB 604 Lote / Ano: 016/01

Ensaios realizados em corpos de prova de dimensões 6,0 x 2,0 x 0,5 cm, dados por prensagem.

CARACTERÍSTICAS DOS CORPOS DE PROVA SECOS À 110° C

Umidade de prensagem.....: 20,85 %

Retração Linear.....: 1,17 %

Módulo de Ruptura...... 51,13 Kgf/cm2

Densidade aparente...... 1,56 g/cm3

CARACTERÍSTICAS DOS CORPOS DE PROVA APÓS QUEIMA

Temp. de queima ° c	Perda ao fogo %	Retração Linear %	Módulo de ruptura (kgf/cm2)	Absorção da água %	Porosidade aparente %	Densidade aparente (g/cm3)	Côr após queima
950	11,61	5,17	83,78	23,48	36,97	1,78	2,5 YR 4/8 T.Forte

Manual comparativo de cores empregado: "Munsell Soil Color Chart"

Recomendações:

A análise dos parâmetros físicos determinados para a amostra em questão, indica seu uso em cerâmica estrutural, na produção de tijolos.

Curitiba, 04/10/01

Katia Norma Siedlecki

Geóloga

ENSAIOS TECNOLÓGICOS DE ARGILA

Projeto...... RIQUEZAS MINERAIS - MUNICÍPIO DE BITURUNA - PR

Amostra...... BT 03 - a UTM: 0448125 E / 7103232 N

Nº de Laboratório: ZAB 605 Lote / Ano: 016/01

Ensaios realizados em corpos de prova de dimensões 6,0 x 2,0 x 0,5 cm, dados por prensagem.

CARACTERÍSTICAS DOS CORPOS DE PROVA SECOS À 110° C

Umidade de prensagem.....: 14,22 %

Retração Linear..... -0,33 %

Módulo de Ruptura...... 40,14 Kgf/cm2

Densidade aparente...... 1,56 g/cm3

CARACTERÍSTICAS DOS CORPOS DE PROVA APÓS QUEIMA

Temp. de queima ° c	Perda ao fogo %	Retração Linear %	Módulo de ruptura (kgf/cm2)	Absorção da água %	Porosidade aparente %	Densidade aparente (g/cm3)	Côr após queima
950	11,63	4,00	63,49	24,52	38,10	1,76	2,5 YR 4/8 T.Forte

Manual comparativo de cores empregado: "Munsell Soil Color Chart"

Recomendações:

A análise dos parâmetros físicos determinados para a amostra em questão, indica seu uso em cerâmica estrutural, na produção de tijolos.

Curitiba, 04/10/01

Katia Norma Siedlecki

Geóloga

ENSAIOS TECNOLÓGICOS DE ARGILA

Projeto...... RIQUEZAS MINERAIS - MUNICÍPIO DE BITURUNA - PR

Amostra...... BT 04 UTM: 0447714 E / 7104718 N

Nº de Laboratório: ZAB 606 Lote / Ano: 016/01

Ensaios realizados em corpos de prova de dimensões 6,0 x 2,0 x 0,5 cm, dados por prensagem.

CARACTERÍSTICAS DOS CORPOS DE PROVA SECOS À 110° C

Umidade de prensagem.....: 16,50 %

Retração Linear...... 0,17 %

Módulo de Ruptura...... 50,00 Kgf/cm2

Densidade aparente...... 1,61 g/cm3

Côr...... 2,5 Y 6/3 - Cinza

CARACTERÍSTICAS DOS CORPOS DE PROVA APÓS QUEIMA

Temp. de queima " c	Perda ao fogo %	Retração Linear %	Módulo de ruptura (kgf/cm2)	Absorção da água %	Porosidade aparente %	Densidade aparente (g/cm3)	Côr após queima
950	8,58	1,33	88,43	22,12	34,32	1,70	7,5 YR 7/6 T.Clara

Manual comparativo de cores empregado: "Munsell Soil Color Chart"

Recomendações:

A análise dos parâmetros físicos determinados para a amostra em questão, indica seu uso em cerâmica estrutural, na produção de tijolos.

Curitiba, 04/10/01

Katia Norma Siedlecki

Geóloga

ENSAIOS TECNOLÓGICOS DE ARGILA

Projeto...... RIQUEZAS MINERAIS - MUNICÍPIO DE BITURUNA - PR

Amostra...... BT 04 - a UTM: 0447714 E / 7104718 N

Nº de Laboratório: ZAB 607 Lote / Ano: 016/01

Ensaios realizados em corpos de prova de dimensões 6,0 x 2,0 x 0,5 cm, dados por prensagem.

CARACTERÍSTICAS DOS CORPOS DE PROVA SECOS À 110° C

Umidade de prensagem.....: 19,64 %

Retração Linear...... 1,17 %

Módulo de Ruptura...... 38,10 Kgf/cm2

Densidade aparente...... 1,58 g/cm3

CARACTERÍSTICAS DOS CORPOS DE PROVA APÓS QUEIMA

Temp. de queima ° c	Perda ao fogo %	Retração Linear %	Módulo de ruptura (kgf/cm2)	Absorção da água %	Porosidade aparente %	Densidade aparente (g/cm3)	Côr após queima
950	9,27	2,83	82,49	24,53	37,52	1,69	5 YR 6/6 T.Clara

Manual comparativo de cores empregado: "Munsell Soil Color Chart"

Recomendações:

A análise dos parâmetros físicos determinados para a amostra em questão, indica seu uso em cerâmica estrutural, na produção de tijolos.

Curitiba, 04/10/01

Katia Norma Siedlecki

Geóloga